Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 17 2023 05:13:46
%S 1,2,26,272,3418,44252,597104,8249152,116158298,1659335492,
%T 23979247276,349798313152,5142733169776,76108788764192,
%U 1132729444052288,16940944956246272,254449319912898394,3836162994088105172,58028561918702719604
%N a(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(2*n+k,k)*binomial(2*k,k).
%C The sequence of Franel numbers A000172 satisfies the identity A000172(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(n+2*k,2*k)*binomial(2*k,k). The present sequence comes from a modification of the right-hand side of the identity.
%C The Franel numbers satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
%C More generally, define two families of sequences {u_m(n): n >= 0} and {v_m(n): n >= 0}, depending on an integer parameter m, by u_m(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(m*n + k,k)*binomial(2*k,k) and v_m(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(m*n + 2*k,2*k)*binomial(2*k,k). In this notation, the Franel numbers A000172 = v_1. Note that u_0(n) = v_0(n) = (-1)^n*binomial(2*n,n). We conjecture that, for all m in Z, the sequences u_m and v_m satisfy the above supercongruences.
%F a(n) = (-4)^n*hypergeom(-n, 2*n+1, 1/2], [1, 1], 1).
%F P-recursive: (20*n^2 - 55*n + 38)*n^2*(2*n - 1)^2*a(n) = (960*n^6 - 4560*n^5 + 8564*n^4 - 8107*n^3 + 4085*n^2 - 1044*n + 108)*a(n-1) + 64*(20*n^2 - 15*n + 3)*(n - 1)^2*(2*n - 3)^2*a(n-2) with a(0) = 1 and a(1) = 2.
%F a(n) ~ 2^(4*n - 1/2) / (Pi*n). - _Vaclav Kotesovec_, Jul 17 2023
%p seq(add((-4)^(n-k)*binomial(n,k)*binomial(2*n+k,k)*binomial(2*k,k), k = 0..n), n = 0..20);
%p # alternative faster program for large n
%p seq(simplify((-4)^n*hypergeom([-n, 2*n+1, 1/2], [1, 1], 1)), n = 0..20);
%t Table[(-4)^n*HypergeometricPFQ[{-n, 2*n+1, 1/2}, {1, 1}, 1], {n, 0, 20}] (* _Vaclav Kotesovec_, Jul 17 2023 *)
%o (Python)
%o from sympy import hyper, hyperexpand, S
%o def A363985(n): return int(hyperexpand(hyper((-n, (m:=n<<1)+1, S.Half), [1,1], 1))*(-(1<<m) if n&1 else 1<<m)) # _Chai Wah Wu_, Jul 10 2023
%Y Cf. A000172, A000984, A362676, A363986 - A363990.
%K nonn,easy
%O 0,2
%A _Peter Bala_, Jul 02 2023