login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of total dominating sets in the n-pan graph.
1

%I #15 Jan 03 2023 04:20:51

%S 2,3,7,12,17,27,46,75,119,192,313,507,818,1323,2143,3468,5609,9075,

%T 14686,23763,38447,62208,100657,162867,263522,426387,689911,1116300,

%U 1806209,2922507,4728718,7651227,12379943,20031168,32411113,52442283,84853394,137295675

%N Number of total dominating sets in the n-pan graph.

%C Extended to a(1)-a(2) using the formula/recurrence.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PanGraph.html">Pan Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TotalDominatingSet.html">Total Dominating Set</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,1).

%F 5*a(n) = 3*A000032(n+2) + 6*cos(n*Pi/2) - 2*sin(n*Pi/2).

%F a(n) = a(n-1) + a(n-2) + a(n-3) for n > 3.

%F G.f.: -x*(2 + x + 4*x^2 + 3*x^3)/((1 + x^2)*(x^2 + x - 1)).

%F E.g.f.: (6*cos(x) - 2*sin(x) - 15 + 3*exp(x/2)*(3*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)))/5. - _Stefano Spezia_, Jan 03 2023

%t Table[(3 LucasL[n + 2] + 6 Cos[n Pi/2] - 2 Sin[n Pi/2])/5, {n, 20}]

%t LinearRecurrence[{1, 0, 1, 1}, {2, 3, 7, 12}, 20]

%t CoefficientList[Series[(-2 - x - 4 x^2 - 3 x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x]

%Y Cf. A000032.

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_, Apr 09 2018