The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A103459 a(n) = 8^n + 1 - 0^n. 2
 1, 9, 65, 513, 4097, 32769, 262145, 2097153, 16777217, 134217729, 1073741825, 8589934593, 68719476737, 549755813889, 4398046511105, 35184372088833, 281474976710657, 2251799813685249, 18014398509481985, 144115188075855873 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)^3 is palindromic in base 8 (1_8, 1331_8, 1030301_8, 1003003001_8, ...). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Patrick De Geest, World!Of Numbers Index entries for linear recurrences with constant coefficients, signature (9,-8). FORMULA G.f.: (1-8*x^2)/((1-x)*(1-8*x)). a(n) = Sum_{k=0..n} binomial(n, k)*0^(k(n-k))*8^k. a(n) = A062395(n), n > 0. - R. J. Mathar, Aug 28 2008 a(n) = 8*a(n-1) - 7, with a(1)=9. - Vincenzo Librandi, Dec 29 2010 a(n) = 9*a(n-1) - 8*a(n-2); a(0)=1, a(1)=9, a(2)=65. - Harvey P. Dale, Oct 21 2011 E.g.f.: -1 + exp(x) + exp(8*x). - G. C. Greubel, Jun 23 2021 MATHEMATICA Join[{1}, 8^Range[20]+1] (* or *) Join[{1}, LinearRecurrence[{9, -8}, {9, 65}, 20]] (* Harvey P. Dale, Oct 21 2011 *) PROG (MAGMA) [1] cat [8^n + 1: n in [1..30]]; // G. C. Greubel, Jun 23 2021 (Sage) [1]+[8^n+1 for n in (1..30)] # G. C. Greubel, Jun 23 2021 CROSSREFS Cf. A046233, A062395. Sequence in context: A020234 A154996 A128195 * A339688 A100311 A259242 Adjacent sequences:  A103456 A103457 A103458 * A103460 A103461 A103462 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 07 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 05:09 EDT 2022. Contains 355030 sequences. (Running on oeis4.)