login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103460
a(n) = 9^n + 1 - 0^n.
1
1, 10, 82, 730, 6562, 59050, 531442, 4782970, 43046722, 387420490, 3486784402, 31381059610, 282429536482, 2541865828330, 22876792454962, 205891132094650, 1853020188851842, 16677181699666570, 150094635296999122
OFFSET
0,2
COMMENTS
a(n)^3 is palindromic in base 9 (1_9, 1331_9, 1030301_9, 1003003001_9, ...).
FORMULA
G.f.: (1-9*x^2)/((1-x)*(1-9*x)).
a(n) = Sum_{k=0..n} binomial(n, k)*0^(k*(n-k))*9^k.
a(n) = A062396(n), n > 0. - R. J. Mathar, Aug 28 2008
a(n) = 9*a(n-1) - 8, with a(1)=10. - Vincenzo Librandi, Dec 29 2010
E.g.f.: -1 + exp(x) + exp(9*x). - G. C. Greubel, Jun 26 2021
MATHEMATICA
Table[9^n + 1 - Boole[n==0], {n, 0, 40}] (* G. C. Greubel, Jun 26 2021 *)
PROG
(Magma) [1] cat [9^n +1: n in [1..40]]; // G. C. Greubel, Jun 26 2021
(Sage) [1]+[9^n +1 for n in (1..40)] # G. C. Greubel, Jun 26 2021
CROSSREFS
Sequence in context: A238276 A287825 A199701 * A339689 A238843 A360698
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 07 2005
STATUS
approved