login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154996 a(n) = 5*a(n-1) + 20*a(n-2), n>2 ; a(0)=1, a(1)=1, a(2)=9. 6
1, 1, 9, 65, 505, 3825, 29225, 222625, 1697625, 12940625, 98655625, 752090625, 5733565625, 43709640625, 333219515625, 2540290390625, 19365842265625, 147635019140625, 1125491941015625, 8580160087890625, 65410639259765625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,20).

FORMULA

G.f.: (1 -4*x -16*x^2)/(1 -5*x -20*x^2).

a(n+1) = Sum_{k=0..n} A154929(n,k)*4^(n-k).

a(n) = (1/2)*{ ((5 - sqrt(105))/2)^(n-1) + ((5 + sqrt(105))/2)^(n-1) } +(13/210)*sqrt(105)*{ ((5 + sqrt(105))/2)^(n-1) - ((5 - sqrt(105))/2)^(n-1) } +(4/5)*(binomial(2*n,n) mod 2), with n>=0. - Paolo P. Lava, Jan 20 2009

MAPLE

m:=30; S:=series( (1-4*x-16*x^2)/(1-5*x-20*x^2), x, m+1):

seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 21 2021

MATHEMATICA

Join[{1}, LinearRecurrence[{5, 20}, {1, 9}, 20]] (* Harvey P. Dale, Jan 19 2012 *)

PROG

(Magma) I:=[1, 9]; [1] cat [n le 2 select I[n] else 5*(Self(n-1) +4*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 21 2021

(Sage)

def A154996_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( (1-4*x-16*x^2)/(1-5*x-20*x^2) ).list()

A154996_list(30) # G. C. Greubel, Apr 21 2021

CROSSREFS

Cf. A154997, A154999, A155000, A155001.

Sequence in context: A287816 A036731 A020234 * A128195 A103459 A339688

Adjacent sequences:  A154993 A154994 A154995 * A154997 A154998 A154999

KEYWORD

nonn

AUTHOR

Philippe Deléham, Jan 18 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 18:13 EDT 2021. Contains 343652 sequences. (Running on oeis4.)