login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154996
a(n) = 5*a(n-1) + 20*a(n-2), n>2 ; a(0)=1, a(1)=1, a(2)=9.
6
1, 1, 9, 65, 505, 3825, 29225, 222625, 1697625, 12940625, 98655625, 752090625, 5733565625, 43709640625, 333219515625, 2540290390625, 19365842265625, 147635019140625, 1125491941015625, 8580160087890625, 65410639259765625
OFFSET
0,3
COMMENTS
The sequences A155001, A155000, A154999, A154997 and A154996 have a common form: a(0)=a(1)=1, a(2)= 2*b+1, a(n) = (b+1)*(a(n-1) + b*a(n-2)), with b some constant. The generating function of these is (1 - b*x - b^2*x^2)/(1 - (b+1)*x - b*(1+b)*x^2). - R. J. Mathar, Jan 20 2009
FORMULA
G.f.: (1 -4*x -16*x^2)/(1 -5*x -20*x^2).
a(n+1) = Sum_{k=0..n} A154929(n,k)*4^(n-k).
MAPLE
m:=30; S:=series( (1-4*x-16*x^2)/(1-5*x-20*x^2), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 21 2021
MATHEMATICA
Join[{1}, LinearRecurrence[{5, 20}, {1, 9}, 20]] (* Harvey P. Dale, Jan 19 2012 *)
PROG
(Magma) I:=[1, 9]; [1] cat [n le 2 select I[n] else 5*(Self(n-1) +4*Self(n-2)): n in [1..30]]; // G. C. Greubel, Apr 21 2021
(Sage)
def A154996_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-4*x-16*x^2)/(1-5*x-20*x^2) ).list()
A154996_list(30) # G. C. Greubel, Apr 21 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Jan 18 2009
STATUS
approved