login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339684
a(n) = Sum_{d|n} 4^(d-1).
12
1, 5, 17, 69, 257, 1045, 4097, 16453, 65553, 262405, 1048577, 4195413, 16777217, 67112965, 268435729, 1073758277, 4294967297, 17179935765, 68719476737, 274878169413, 1099511631889, 4398047559685, 17592186044417, 70368748389461, 281474976710913
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} x^k / (1 - 4*x^k).
G.f.: Sum_{k>=1} 4^(k-1) * x^k / (1 - x^k).
a(n) ~ 4^(n-1). - Vaclav Kotesovec, Jun 05 2021
MATHEMATICA
Table[Sum[4^(d - 1), {d, Divisors[n]}], {n, 1, 25}]
nmax = 25; CoefficientList[Series[Sum[x^k/(1 - 4 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
PROG
(PARI) a(n) = sumdiv(n, d, 4^(d-1)); \\ Michel Marcus, Dec 13 2020
(Magma)
A339684:= func< n | (&+[4^(d-1): d in Divisors(n)]) >;
[A339684(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
(SageMath)
def A339684(n): return sum(4^(k-1) for k in (1..n) if (k).divides(n))
[A339684(n) for n in range(1, 41)] # G. C. Greubel, Jun 25 2024
CROSSREFS
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), this sequence (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).
Sequence in context: A146790 A149696 A096980 * A149697 A149698 A149699
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 12 2020
STATUS
approved