Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 16 2022 04:55:21
%S 1,9,65,511,4743,52525,683657,10256775,174369527,3313030741,
%T 69573667065,1600194389599,40004859842375,1080131215965309,
%U 31323805263469097,971037963168557815,32044252784564570583,1121548847459764557925,41497307356011298342553,1618394986884440655806799
%N a(n) = (2*n + 1)*(a(n - 1) + 2^n) for n >= 1, a(0) = 1.
%H P. Luschny, <a href="http://www.luschny.de/math/seq/variations.html">Variants of Variations</a>.
%F a(n) = A126062(2, n), double variations.
%F a(n) = (2n+1)!/(n! 2^n) Sum(k=0..n, 4^k*k!/(2k)!) [Gottfried Helms]
%F a(n) = 2^n (2n+1) Sum(k=0..n, Gamma(n+1/2)/Gamma(k+1/2))
%F a(n) = 2^(n+1) Gamma(n+3/2) Sum(k=0..n, 1/Gamma(k+1/2))
%F a(n) = A128196(n)*A005408(n)
%F a(n) = A128196(n+1)-A000079(n+1)
%F Recursive form:
%F a(n) = 2^(n+1)*v(n+1/2) with v(x) = if x <= 1 then x else x(v(x-1)+1).
%F a(n) = (2n+1)*(a(n-1)+2^n), a(0) = 1 [Wolfgang Thumser]
%F Note: The following constants will be used in the next formulas.
%F K = (1-exp(1)*Gamma(1/2,1))/Gamma(1/2)
%F M = sqrt(2)(1+exp(1)(Gamma(1/2)-Gamma(1/2,1)))
%F Generalized form: For x>0
%F a(x) = 2^(x+1)(x+1/2)(exp(1) Gamma(x+1/2,1) + K Gamma(x+1/2))
%F Asymptotic formula:
%F a(n) ~ 2^(n+5/2)*Gamma(n+3/2)
%F a(n) ~ (exp(1)+K)*2^(n+1)*(n+1/2)!
%F a(n) ~ M(2n+1)(2exp(-1)(n-1/(24*n+19/10*1/n)))^n
%p a := n -> `if`(n=0,1,(2*n+1)*(a(n-1)+2^n));
%t a[0] = 1; a[n_] := a[n] = (2*n+1)*(a[n-1] + 2^n); Table[a[n], {n, 0, 14}] (* _Jean-François Alcover_, Jul 29 2013 *)
%Y Cf. A007526 (The number of variations), A128196 (A weighted sum of double factorials), A126062.
%K easy,nonn
%O 0,2
%A _Peter Luschny_, Feb 26 2007