login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323206
A(n, k) = hypergeometric([-k, k+1], [-k-1], n), square array read by ascending antidiagonals for n,k >= 0.
4
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 14, 1, 1, 5, 25, 67, 42, 1, 1, 6, 41, 190, 381, 132, 1, 1, 7, 61, 413, 1606, 2307, 429, 1, 1, 8, 85, 766, 4641, 14506, 14589, 1430, 1, 1, 9, 113, 1279, 10746, 55797, 137089, 95235, 4862, 1
OFFSET
0,5
COMMENTS
Conjecture: A(n, k) is odd if and only if n is even or (n is odd and k + 2 = 2^j for some j > 0).
LINKS
J. Abate, W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011).
B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687.
FORMULA
A(n, k) = [x^k] 1/(x - x^2*C(n*x)) if n > 0 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the generating function of the Catalan numbers A000108.
A(n, k) = Sum_{j=0..k} (binomial(2*k-j, k) - binomial(2*k-j, k+1))*n^(k-j).
A(n, k) = Sum_{j=0..k} binomial(k + j, k)*(1 - j/(k + 1))*n^j (cf. A009766).
A(n, k) = 1 + Sum_{j=0..k-1} ((1+j)*binomial(2*k-j, k+1)/(k-j))*n^(k-j).
A(n, k) = (1/(2*Pi))*Integral_{x=0..4*n} (sqrt(x*(4*n-x))*x^k)/(1+(n-1)*x), n>0.
A(n, k) ~ ((4*n)^k/(Pi^(1/2)*k^(3/2)))*(1+1/(2*n-1))^2.
If we shift the series f with constant term 1 to the right, invert it with respect to composition and shift the result back to the left then we call this the 'pseudo reversion' of f, prev(f). Row n of the array gives the coefficients of the pseudo reversion of f = (1 + (n - 1)*x)/((1 - x)^2) with an additional inversion of sign. Note that f is not revertible. See also the Sage implementation below.
A(n, k) = [x^k] prev((1 + (n - 1)*(-x))/(1 - (-x))^2).
A(n, k) = [x^(k+1)] cf(n, x) where cf(n, x) = K_{i>=1} c(i)/b(i) in the notation of Gauß with b(i) = 1, c(1) = 1, c(2) = -x and c(i) = -n*x for i > 2.
For a recurrence see the Maple section.
EXAMPLE
Array starts:
[n\k 0 1 2 3 4 5 6 7 ...]
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 2, 5, 14, 42, 132, 429, 1430, ... A000108
[2] 1, 3, 13, 67, 381, 2307, 14589, 95235, ... A064062
[3] 1, 4, 25, 190, 1606, 14506, 137089, 1338790, ... A064063
[4] 1, 5, 41, 413, 4641, 55797, 702297, 9137549, ... A064087
[5] 1, 6, 61, 766, 10746, 161376, 2537781, 41260086, ... A064088
[6] 1, 7, 85, 1279, 21517, 387607, 7312789, 142648495, ... A064089
[7] 1, 8, 113, 1982, 38886, 817062, 17981769, 409186310, ... A064090
[8] 1, 9, 145, 2905, 65121, 1563561, 39322929, 1022586105, ... A064091
.
Seen as a triangle (by reading ascending antidiagonals):
1
1, 1
1, 2, 1
1, 3, 5, 1
1, 4, 13, 14, 1
1, 5, 25, 67, 42, 1
1, 6, 41, 190, 381, 132, 1
MAPLE
# The function ballot is defined in A238762.
A := (n, k) -> add(ballot(2*j, 2*k)*n^j, j=0..k):
for n from 0 to 6 do seq(A(n, k), k=0..9) od;
# Or by recurrence:
A := proc(n, k) option remember;
if n = 1 then return `if`(k = 0, 1, (4*k + 2)*A(1, k-1)/(k + 2)) fi:
if k < 2 then return [1, n+1][k+1] fi; n*(4*k - 2);
((%*(n - 1) - k - 1)*A(n, k-1) + %*A(n, k-2))/((n - 1)*(k + 1)) end:
for n from 0 to 6 do seq(A(n, k), k=0..9) od;
# Alternative:
Arow := proc(n, len) # Function REVERT is in Sloane's 'Transforms'.
[seq(1 + n*k, k=0..len-1)]; REVERT(%); seq((-1)^k*%[k+1], k=0..len-1) end:
for n from 0 to 8 do Arow(n, 8) od;
MATHEMATICA
A[n_, k_] := Hypergeometric2F1[-k, k + 1, -k - 1, n];
Table[A[n, k], {n, 0, 8}, {k, 0, 8}]
(* Alternative: *)
prev[f_, n_] := InverseSeries[Series[-x f, {x, 0, n}]]/(-x);
f[n_, x_] := (1 + (n - 1) x)/((1 - x)^2);
For[n = 0, n < 9, n++, Print[CoefficientList[prev[f[n, x], 8], x]]]
(* Continued fraction: *)
num[k_, n_] := If[k < 2, 1, If[k == 2, -x, -n x]];
cf[n_, len_] := ContinuedFractionK[num[k, n], 1, {k, len + 2}];
Arow[n_, len_] := Rest[CoefficientList[Series[cf[n, len], {x, 0, len}], x]];
For[n = 0, n < 9, n++, Print[Arow[n, 8]]]
PROG
(Sage) # Valid for n > 0.
def genCatalan(n): return SR(1/(x- x^2*(1 - sqrt(1 - 4*x*n))/(2*x*n)))
for n in (1..8): print(genCatalan(n).series(x).list())
# Alternative:
def pseudo_reversion(g, invsign=false):
if invsign: g = g.subs(x=-x)
g = g.shift(1)
g = g.reverse()
g = g.shift(-1)
return g
R.<x> = PowerSeriesRing(ZZ)
for n in (0..6):
f = (1+(n-1)*x)/((1-x)^2)
s = pseudo_reversion(f, true)
print(s.list())
(PARI)
{A(n, k) = polcoeff((1/x)*serreverse(x*((1+(n-1)*(-x))/((1-(-x))^2)+x*O(x^k))), k)}
for(n=0, 8, for(k=0, 8, print1(A(n, k), ", ")); print())
CROSSREFS
Diagonals: A323209 (main), A323208 (sup main), A323217 (sub main).
Sums of antidiagonals: A323207
Sequence in context: A241578 A112338 A111672 * A340968 A128198 A320031
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 21 2019
STATUS
approved