login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A323217 a(n) = hypergeometric([-n, n + 1], [-n - 1], n + 1). 2
1, 3, 25, 413, 10746, 387607, 17981769, 1022586105, 68964092542, 5384626548491, 477951767068986, 47546350648784341, 5240644323742274500, 634033030117301108127, 83540992651137240168361, 11908866726507685451458545 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..15.

FORMULA

a(n) = A323206(n+1, n).

a(n) = Sum_{j=0..n} (binomial(2*n-j, n) - binomial(2*n-j, n+1))*(n+1)^(n-j).

a(n) = Sum_{j=0..n} binomial(n+j, n)*(1 - j/(n + 1))*(n + 1)^j.

a(n) = 1 + Sum_{j=0..n-1} ((1+j)*binomial(2*n-j, n+1)/(n-j))*(n+1)^(n-j).

a(n) = (1/(2*Pi))*Integral_{x=0..4*(n+1)} (sqrt(x*(4*(n+1)-x))*x^n)/(1+n*x).

a(n) ~ (4^(n+1)*(n+1)^(n+2))/(sqrt(Pi)*(2*n+1)^2*n^(3/2)).

MAPLE

# The function ballot is defined in A238762.

a := n -> add(ballot(2*j, 2*n)*(n+1)^j, j=0..n):

seq(a(n), n=0..16);

MATHEMATICA

a[n_] := Hypergeometric2F1[-n, n + 1, -n - 1, n + 1];

Table[a[n], {n, 0, 16}]

CROSSREFS

Cf. A323206, A238762.

Sequence in context: A143925 A245309 A074708 * A160143 A009843 A182962

Adjacent sequences:  A323214 A323215 A323216 * A323218 A323219 A323220

KEYWORD

nonn

AUTHOR

Peter Luschny, Feb 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 23:50 EST 2022. Contains 350504 sequences. (Running on oeis4.)