OFFSET
0,2
FORMULA
a(n) = [x^n] (8*x^4 - 31*x^3 + 41*x^2 - 18*x - 1)/(x - 1)^5.
a(n) = n! [x^n] exp(x)*(x^4 + 28*x^3 + 228*x^2 + 528*x + 24)/24.
a(n) = (1/3)*((2*n + 17)*a(n-3) - (3*n + 25)*a(n-2) + (n + 15)*a(n-1)) for n >= 3.
a(n) = A323224(n, 5).
MAPLE
a := n -> (n^4 + 22*n^3 + 155*n^2 + 350*n + 24)/24:
seq(a(n), n=0..40);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jan 25 2019
STATUS
approved