login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323220
a(n) = n*(n + 5)*(n + 7)*(n + 10)/24 + 1.
2
1, 23, 64, 131, 232, 376, 573, 834, 1171, 1597, 2126, 2773, 3554, 4486, 5587, 6876, 8373, 10099, 12076, 14327, 16876, 19748, 22969, 26566, 30567, 35001, 39898, 45289, 51206, 57682, 64751, 72448, 80809, 89871, 99672, 110251, 121648, 133904, 147061, 161162, 176251
OFFSET
0,2
FORMULA
a(n) = [x^n] (8*x^4 - 31*x^3 + 41*x^2 - 18*x - 1)/(x - 1)^5.
a(n) = n! [x^n] exp(x)*(x^4 + 28*x^3 + 228*x^2 + 528*x + 24)/24.
a(n) = (1/3)*((2*n + 17)*a(n-3) - (3*n + 25)*a(n-2) + (n + 15)*a(n-1)) for n >= 3.
a(n) = A323224(n, 5).
MAPLE
a := n -> (n^4 + 22*n^3 + 155*n^2 + 350*n + 24)/24:
seq(a(n), n=0..40);
CROSSREFS
Cf. A323224 (column 5), A323233 (row 5), A323221 (first diff.), A034856 (second diff.).
Sequence in context: A089823 A304896 A316578 * A001346 A051875 A125872
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jan 25 2019
STATUS
approved