OFFSET
0,2
COMMENTS
a(n) is related to the total angular defect of certain polytopes. See Hilton and Pedersen, Cor. 1; compare A275874.
LINKS
P. Hilton and J. Pedersen, Descartes, Euler, Poincaré, Pólya and Polyhedra, L'Enseign. Math., 27 (1981), 327-343.
FORMULA
Let I(n) denote the set of all tuples of length n with elements from {0, 1, 2, 3} with sum <= 3 and C(m) denote the m-th Catalan number. Then for n > 0
a(n) = Sum_{(j1,...,jn) in I(n)} C(j1)*C(j2)*...*C(jn).
a(n) = [x^n] (3*x^3 - 8*x^2 + 5*x + 1)/(x - 1)^4.
a(n) = n! [x^n] exp(x)*(x^3 + 15*x^2 + 48*x + 6)/6.
a(n) = a(n - 1)*(n*(n + 5)*(n + 7) + 6)/(n*(n + 2)*(n + 7) - 18) for n > 0.
a(n) = A323224(n, 4).
a(n) = A275874(n+4) + 1.
EXAMPLE
For n = 2 the sum formula gives:
I(2) = {{0,0}, {0,1}, {1,0}, {0,2}, {1,1}, {2,0}, {0,3}, {1,2}, {2,1}, {3,0}};
a(2) = 1 + 1 + 1 + 2 + 1 + 2 + 5 + 2 + 2 + 5 = 22.
MAPLE
a := n -> n*(35 + 12*n + n^2)/6 + 1:
seq(a(n), n = 0..45);
MATHEMATICA
a[n_] := n (35 + 12 n + n^2)/6 + 1;
Table[a[n], {n, 0, 45}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jan 25 2019
STATUS
approved