login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323221
a(n) = n*(n + 5)*(n + 7)/6 + 1.
3
1, 9, 22, 41, 67, 101, 144, 197, 261, 337, 426, 529, 647, 781, 932, 1101, 1289, 1497, 1726, 1977, 2251, 2549, 2872, 3221, 3597, 4001, 4434, 4897, 5391, 5917, 6476, 7069, 7697, 8361, 9062, 9801, 10579, 11397, 12256, 13157, 14101, 15089, 16122, 17201, 18327, 19501
OFFSET
0,2
COMMENTS
a(n) is related to the total angular defect of certain polytopes. See Hilton and Pedersen, Cor. 1; compare A275874.
LINKS
P. Hilton and J. Pedersen, Descartes, Euler, Poincaré, Pólya and Polyhedra, L'Enseign. Math., 27 (1981), 327-343.
FORMULA
Let I(n) denote the set of all tuples of length n with elements from {0, 1, 2, 3} with sum <= 3 and C(m) denote the m-th Catalan number. Then for n > 0
a(n) = Sum_{(j1,...,jn) in I(n)} C(j1)*C(j2)*...*C(jn).
a(n) = [x^n] (3*x^3 - 8*x^2 + 5*x + 1)/(x - 1)^4.
a(n) = n! [x^n] exp(x)*(x^3 + 15*x^2 + 48*x + 6)/6.
a(n) = a(n - 1)*(n*(n + 5)*(n + 7) + 6)/(n*(n + 2)*(n + 7) - 18) for n > 0.
a(n) = A323224(n, 4).
a(n) = A275874(n+4) + 1.
EXAMPLE
For n = 2 the sum formula gives:
I(2) = {{0,0}, {0,1}, {1,0}, {0,2}, {1,1}, {2,0}, {0,3}, {1,2}, {2,1}, {3,0}};
a(2) = 1 + 1 + 1 + 2 + 1 + 2 + 5 + 2 + 2 + 5 = 22.
MAPLE
a := n -> n*(35 + 12*n + n^2)/6 + 1:
seq(a(n), n = 0..45);
MATHEMATICA
a[n_] := n (35 + 12 n + n^2)/6 + 1;
Table[a[n], {n, 0, 45}]
CROSSREFS
Çf. A323224 (column 4), A323233 (row 4), A034856 (first difference), A275874.
Sequence in context: A130861 A049730 A131895 * A250730 A251285 A197498
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jan 25 2019
STATUS
approved