login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323223
a(n) = [x^n] x/((1 - x)*(1 - 4*x)^(5/2)).
2
0, 1, 11, 81, 501, 2811, 14823, 74883, 366603, 1752273, 8218733, 37964449, 173172249, 781607349, 3496163949, 15517771749, 68412846069, 299828796219, 1307168814519, 5672308893819, 24511334499219, 105519144602439, 452695473616239, 1936085243038839, 8256615564926439
OFFSET
0,3
LINKS
FORMULA
a(n) = ((5*n + 1)*a(n-1) - (4*n + 2)*a(n-2))/(n - 1) for n >= 2.
a(n) = -(-4)^n*binomial(-5/2, n)*hypergeom([1, n+5/2], [n+1], 4) - i*sqrt(3)/27.
a(n) ~ 2^(2*n+2) * n^(3/2) / (9*sqrt(Pi)). - Vaclav Kotesovec, Jan 29 2019
a(n+1) - a(n) = A002802(n). - Seiichi Manyama, Jan 29 2019
MAPLE
A323223List := proc(len) local ogf, ser; ogf := (1 - 4*x)^(-5/2)*x/(1 - x);
ser := series(ogf, x, (n+1)*len+1); seq(coeff(ser, x, j), j=0..len) end:
A323223List(24);
# Alternative:
a := proc(n) option remember; `if`(n<2, n, ((5*n+1)*a(n-1)-(4*n+2)*a(n-2))/(n-1)) end: seq(a(n), n=0..24);
CROSSREFS
Row 5 of A323222.
Cf. A002802.
Sequence in context: A305826 A252817 A210064 * A211557 A333061 A055429
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 26 2019
STATUS
approved