login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210064
Total number of 231 patterns in the set of permutations avoiding 123.
1
0, 0, 1, 11, 81, 500, 2794, 14649, 73489, 356960, 1691790, 7864950, 36000186, 162697176, 727505972, 3223913365, 14176874193, 61926666824, 268931341414, 1161913686618, 4997204887550, 21404922261112, 91351116184716, 388581750349946, 1647982988377786
OFFSET
1,4
COMMENTS
a(n) is the total number of 231 (and also 312) patterns in the set of all 123 avoiding n-permutations. Also the number of 231 (or 213, or 312) patterns in the set of all 132 avoiding n-permutations.
LINKS
Cheyne Homberger, Expected patterns in permutation classes, Electronic Journal of Combinatorics, 19(3) (2012), P43.
FORMULA
G.f.: x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x).
a(n) ~ n * 2^(2*n-3) * (1 - 6/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 15 2014
Conjecture: n*(n-3)*a(n) +2*(-4*n^2+11*n-2)*a(n-1) +8*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 08 2016
EXAMPLE
a(3) = 1 since there is only one 231 pattern in the set {132,213,231,312,321}.
MATHEMATICA
Rest[CoefficientList[Series[x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 15 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec(x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x))) \\ G. C. Greubel, May 31 2017
CROSSREFS
Cf. A045720.
Sequence in context: A119364 A305826 A252817 * A323223 A211557 A333061
KEYWORD
nonn
AUTHOR
Cheyne Homberger, Mar 16 2012
STATUS
approved