OFFSET
1,4
COMMENTS
a(n) is the total number of 231 (and also 312) patterns in the set of all 123 avoiding n-permutations. Also the number of 231 (or 213, or 312) patterns in the set of all 132 avoiding n-permutations.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Cheyne Homberger, Expected patterns in permutation classes, Electronic Journal of Combinatorics, 19(3) (2012), P43.
FORMULA
G.f.: x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x).
a(n) ~ n * 2^(2*n-3) * (1 - 6/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 15 2014
Conjecture: n*(n-3)*a(n) +2*(-4*n^2+11*n-2)*a(n-1) +8*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 08 2016
EXAMPLE
a(3) = 1 since there is only one 231 pattern in the set {132,213,231,312,321}.
MATHEMATICA
Rest[CoefficientList[Series[x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 15 2014 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0], Vec(x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x))) \\ G. C. Greubel, May 31 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Cheyne Homberger, Mar 16 2012
STATUS
approved