login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n + 5)*(n + 7)/6 + 1.
3

%I #22 Jan 29 2019 04:33:54

%S 1,9,22,41,67,101,144,197,261,337,426,529,647,781,932,1101,1289,1497,

%T 1726,1977,2251,2549,2872,3221,3597,4001,4434,4897,5391,5917,6476,

%U 7069,7697,8361,9062,9801,10579,11397,12256,13157,14101,15089,16122,17201,18327,19501

%N a(n) = n*(n + 5)*(n + 7)/6 + 1.

%C a(n) is related to the total angular defect of certain polytopes. See Hilton and Pedersen, Cor. 1; compare A275874.

%H P. Hilton and J. Pedersen, <a href="https://www.e-periodica.ch/digbib/view?pid=ens-001:1981:27::136#485">Descartes, Euler, Poincaré, Pólya and Polyhedra</a>, L'Enseign. Math., 27 (1981), 327-343.

%F Let I(n) denote the set of all tuples of length n with elements from {0, 1, 2, 3} with sum <= 3 and C(m) denote the m-th Catalan number. Then for n > 0

%F a(n) = Sum_{(j1,...,jn) in I(n)} C(j1)*C(j2)*...*C(jn).

%F a(n) = [x^n] (3*x^3 - 8*x^2 + 5*x + 1)/(x - 1)^4.

%F a(n) = n! [x^n] exp(x)*(x^3 + 15*x^2 + 48*x + 6)/6.

%F a(n) = a(n - 1)*(n*(n + 5)*(n + 7) + 6)/(n*(n + 2)*(n + 7) - 18) for n > 0.

%F a(n) = A323224(n, 4).

%F a(n) = A275874(n+4) + 1.

%e For n = 2 the sum formula gives:

%e I(2) = {{0,0}, {0,1}, {1,0}, {0,2}, {1,1}, {2,0}, {0,3}, {1,2}, {2,1}, {3,0}};

%e a(2) = 1 + 1 + 1 + 2 + 1 + 2 + 5 + 2 + 2 + 5 = 22.

%p a := n -> n*(35 + 12*n + n^2)/6 + 1:

%p seq(a(n), n = 0..45);

%t a[n_] := n (35 + 12 n + n^2)/6 + 1;

%t Table[a[n], {n, 0, 45}]

%Y Çf. A323224 (column 4), A323233 (row 4), A034856 (first difference), A275874.

%K nonn,easy

%O 0,2

%A _Peter Luschny_, Jan 25 2019