login
A064094
Triangle composed of generalized Catalan numbers.
25
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 13, 4, 1, 1, 1, 42, 67, 25, 5, 1, 1, 1, 132, 381, 190, 41, 6, 1, 1, 1, 429, 2307, 1606, 413, 61, 7, 1, 1, 1, 1430, 14589, 14506, 4641, 766, 85, 8, 1, 1, 1, 4862, 95235, 137089, 55797, 10746, 1279, 113, 9, 1, 1
OFFSET
0,8
COMMENTS
The column m sequence (without leading zeros and the first 1) appears in the Derrida et al. 1992 reference as Z_{N}=Y_{N}(N+1), N >=0, for alpha = m, beta = 1 (or alpha = 1, beta = m). In the Derrida et al. 1993 reference the formula in eq. (39) gives Z_{N}(alpha,beta)/(alpha*beta)^N for N>=1.
LINKS
B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.
FORMULA
G.f. for column m: (x^m)/(1-x*c(m*x))= (x^m)*((m-1)+m*x*c(m*x))/(m-1+x) with the g.f. c(x) of Catalan numbers A000108.
T(n, m) = Sum_{j=0..n-m-1} ((n-m-j)*binomial(n-m-1+j, j)*(m^j)/(n-m) or T(n, m) = (1/(1-m))^(n-m)*(1 - m*Sum_{j=0..n-m-1} C(j)*(m*(1-m))^j ), for n - m >= 1, T(n, n) = 1, T(n, m) = 0 if n<m; with C(k) = A000108(k) (Catalan).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 5, 3, 1, 1;
1, 14, 13, 4, 1, 1;
1, 42, 67, 25, 5, 1, 1;
1, 132, 381, 190, 41, 6, 1, 1;
1, 429, 2307, 1606, 413, 61, 7, 1, 1;
1, 1430, 14589, 14506, 4641, 766, 85, 8, 1, 1;
MATHEMATICA
T[n_, 0] = 1; T[n_, 1] := CatalanNumber[n - 1]; T[n_, n_] = 1; T[n_, m_] := (1/(1 - m))^(n - m)*(1 - m*Sum[ CatalanNumber[k]*(m*(1 - m))^k, {k, 0, n - m - 1}]); Table[ T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
PROG
(Magma)
function A064094(n, k)
if k eq 0 or k eq n then return 1;
else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k);
end if;
end function;
[A064094(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2024
(SageMath)
def A064094(n, k):
if (k==0 or k==n): return 1
else: return sum((n-k-j)*binomial(n-k-1+j, j)*k^j for j in range(n-k))//(n-k)
flatten([[A064094(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 27 2024
CROSSREFS
Columns (without leading zeros): A000012 (k=0), A000108 (k=1), A064062 (k=2), A064063 (k=3), A064087 (k=4), A064088 (k=5), A064089 (k=6), A064090 (k=7), A064091 (k=8), A064092 (k=9), A064093 (k=10).
Cf. A064095 (row sums).
Sequence in context: A069739 A066060 A008550 * A090182 A256384 A111673
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Sep 13 2001
STATUS
approved