This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064094 Triangle composed of generalized Catalan numbers. 23
 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 13, 4, 1, 1, 1, 42, 67, 25, 5, 1, 1, 1, 132, 381, 190, 41, 6, 1, 1, 1, 429, 2307, 1606, 413, 61, 7, 1, 1, 1, 1430, 14589, 14506, 4641, 766, 85, 8, 1, 1, 1, 4862, 95235 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS The column m sequence (without leading zeros and the first 1) appears in the Derrida et al. 1992 reference as Z_{N}=Y_{N}(N+1), N >=0, for alpha = m, beta = 1 (or alpha = 1, beta = m). In the Derrida et al. 1993 reference the formula in eq. (39) gives Z_{N}(alpha,beta)/(alpha*beta)^N for N>=1. The column sequences (without leading zeros) are: A000012, A000108, A064062-3, A064087-93 for m=0..10, respectively. Row sums give A064095. REFERENCES B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672. B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513. LINKS FORMULA G.f. for column m: (x^m)/(1-x*c(m*x))= (x^m)*((m-1)+m*x*c(m*x))/(m-1+x) with the g.f. c(x) of Catalan numbers A000108. a(n, m)= sum((n-m-k)*binomial(n-m-1+k, k)*(m^k)/(n-m), k=0..n-m-1) = ((1/(1-m))^(n-m)*(1-m*sum(C(k)*(m*(1-m))^k, k=0..n-m-1)), n-m >= 1; a(n, n)=1; a(n, m)=0 if n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 16:57 EDT 2018. Contains 316271 sequences. (Running on oeis4.)