login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064095
Row sums of triangle A064094.
2
1, 2, 3, 5, 11, 34, 142, 753, 4826, 36028, 305133, 2879841, 29909422, 338479430, 4139716659, 54339861531, 761150445735, 11322139144240, 178116143657890, 2952831190016239, 51423702126549167, 938126972940647198, 17883424301972473340, 355435808475002747565, 7350551776003412371185
OFFSET
0,2
LINKS
MATHEMATICA
A064094[n_, k_]:= If[k==0 || k==n, 1, Sum[(n-k-j)*Binomial[n-k-1+j, j]*k^j, {j, 0, n-k-1}]/(n-k) ];
A064095[n_]:= Sum[A064094[n, k], {k, 0, n}];
Table[A064095[n], {n, 0, 30}] (* G. C. Greubel, Sep 27 2024 *)
PROG
(PARI)
T(n, k)= if (n==k, 1, sum(i=0, n-k-1, (n-k-i)*binomial(n-k-1+i, i)*(k^i)/(n-k))); \\ A064094
a(n) = sum(k=0, n, T(n, k));
(Magma)
function A064094(n, k)
if k eq 0 or k eq n then return 1;
else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k);
end if;
end function;
A064095:= func< n | (&+[A064094(n, k): k in [0..n]]) >;
[A064095(n): n in [0..30]]; // G. C. Greubel, Sep 27 2024
(SageMath)
def A064094(n, k):
if (k==0 or k==n): return 1
else: return sum((n-k-j)*binomial(n-k-1+j, j)*k^j for j in range(n-k))//(n-k)
def A064095(n): return sum(A064094(n, k) for k in range(n+1))
[A064095(n) for n in range(31)] # G. C. Greubel, Sep 27 2024
CROSSREFS
Cf. A064094.
Sequence in context: A124538 A124627 A305971 * A061935 A067078 A124561
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 13 2001
EXTENSIONS
More terms from Michel Marcus, Oct 28 2022
STATUS
approved