login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305971
Antidiagonal sums of A305962.
3
1, 2, 3, 5, 11, 34, 141, 736, 4653, 34842, 303848, 3041514, 34520903, 439820187, 6238591638, 97832195694, 1685800545944, 31746373299029, 650170193047230, 14418116545259245, 344857160229381442, 8865220175506008295, 244158955254595904415, 7183277314615065192163
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{j=0..n} (j-1)! * [x^(j-1)] exp(x + Sum_{i=1..n-j} (exp(i*x)-1)/i) for n > 0, a(0) = 1.
a(n) = Sum_{j=0..n} A305962(j,n-j).
MAPLE
b:= proc(n, k, m) option remember; `if`(n=0, 1,
add(b(n-1, k, max(m, j)), j=1..m+k))
end:
a:= n-> add(b(j, n-j, 1+j-n), j=0..n):
seq(a(n), n=0..25);
# second Maple program:
b:= (n, k)-> `if`(n=0, 1, (n-1)!*coeff(series(exp(x+add(
(exp(j*x)-1)/j, j=1..k)), x, n), x, n-1)):
a:= n-> add(b(j, n-j), j=0..n):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, k_, m_] := b[n, k, m] = If[n == 0, 1, Sum[b[n - 1, k, Max[m, j]], {j, 1, m + k}]];
a[n_] := Sum[b[j, n - j, 1 + j - n], {j, 0, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 16 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A132745 A124538 A124627 * A064095 A061935 A067078
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 15 2018
STATUS
approved