login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124627
Riemann-Gram approximation to A007097(n+1) using A007097(n).
0
2, 3, 5, 11, 33, 127, 715, 5345, 52692, 648344, 9737826, 174442666, 3657513487, 88362834417, 2428095525614, 75063691591379, 2586559741900744, 98552043877145945, 4123221751454999891, 188272405177875090033, 9332039515886416792536, 499720579610294249596689, 28785866289101759323472435, 1776891233143817540293248652
OFFSET
1,1
COMMENTS
The largest presently [as of Dec 2006] known value of prime(10^n) is
prime(10^18) = 44211790234832169331 this compares to
primex(10^18) = 44211790234127235727 accurate to 11 places
Here the sign of prime(x)-primex(x) is positive. However, the sign changes as x varies. The following is a table with the relative error and sign change:
n prime(10^n) primex(10^n) rel. error
-- -------------------- -------------------- ------------
6 15485863 15484040 1.1772 E-4
7 179424673 179431239 -3.6594 E-4
8 2038074743 2038076587 -9.0478 E-5
9 22801763489 22801797576 -1.4949 E-5
10 252097800623 252097715777 3.3655 E-6
11 2760727302517 2760727752353 -1.6294 E-6
12 29996224275833 29996225393465 -3.7259 E-7
13 323780508946331 323780512411510 -1.0702 E-7
14 3475385758524527 3475385760290723 -5.0820 E-8
15 37124508045065437 37124508056355511 -3.0411 E-9
16 394906913903735329 394906913798224969 2.6718 E-9
17 4185296581467695669 4185296581676470048 -4.9883 E-11
18 44211790234832169331 44211790234127235727 1.5944 E-11
FORMULA
Primex(n) ~ prime(n). Prime(n) is the n-th prime number. Primex(n) is the Riemann-Gram approximation of Prime(n) accurate to log_10(n)/2 + 1 digits for large n. The sequence is primex(A007097(n)) for n = 1 to 18.
EXAMPLE
A007097(17) = 75063692618249;
Primex(75063692618249) = 2586559741900744;
A007097(18) = 2586559730396077;
Primex(2586559730396077) = 98552043877145945;
A007097(19) ~ 98552043800000000.
MATHEMATICA
RiemannGram[x_] := Module[{n = 1, L, s = 1, r}, L = r = Log[x];
While[s < 10^30 r, s = s + r/(Zeta[n + 1] n); n++; r = r L/n]; s];
Primex[n_] := Module[{r1, r2, r, est}, If[n == 1, r = 2, r1 = n Log[n]; r2 = 2 r1; For[i = 1, i < 50, i++, r = (r1 + r2)/2; est = RiemannGram[r]; If[est < n, r1 = r, r2 = r]]]; Round@r];
Primex /@ NestList[Prime, 1, 15] (* Birkas Gyorgy, Apr 04 2011 *)
PROG
(PARI) xeqprimex(n) = {
my(a, x); a = [1, 2, 3, 5, 11, 31, 127, 709, 5381, 52711, 648391, 9737333, 174440041, 3657500101, 88362852307, 2428095424619, 75063692618249, 2586559730396077];
for(x=1, n, print1(round(primex(a[x]))", ") ) }
\\ Approximates the n-th prime number to an accuracy of log10(n)/2 places.
primex(n) = {
my(x, px, r1, r2, r, p10, b, e, est);
if(n==1, return(2)); \\ force to 2
b=10; \\ Select base
p10=log(n)/log(10); \\ Determine p10 = power of 10 of n to adjust b^p10
if(Rg(b^p10*log(b^(p10+1)))< b^p10, m=p10+1, m=p10);
r1 = 0; r2 = 7.718281828; \\ Real kicker. if r2=1, it fails at 1e117
for(x=1, 100,
r=(r1+r2)/2;
est = (b^p10*log(b^(m+r)));
px = Rg(est);
if(px <= b^p10, r1=r, r2=r); r=(r1+r2)/2; );
est;
}
Rg(x) = \\ Gram's Riemann Approx of Pi(x)
{ my(n=1, L, s=1, r);
L=r=log(x);
while(s<10^40*r, s=s+r/zeta(n+1)/n; n=n+1; r=r*L/n);
(s)
}
CROSSREFS
Cf. A007097.
Sequence in context: A375554 A132745 A124538 * A305971 A064095 A061935
KEYWORD
nonn,uned
AUTHOR
Cino Hilliard, Dec 21 2006
EXTENSIONS
a(19) and a(20) found by David Baugh using a program by Xavier Gourdon and Andrey V. Kulsha, Oct 25 2007
a(21), a(22) and a(23) calculated by David Baugh, Feb 10 2015
a(24) calculated by David Baugh, May 16 2016
STATUS
approved