login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124625 Even numbers sandwiched between 1's. 10
1, 0, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1, 12, 1, 14, 1, 16, 1, 18, 1, 20, 1, 22, 1, 24, 1, 26, 1, 28, 1, 30, 1, 32, 1, 34, 1, 36, 1, 38, 1, 40, 1, 42, 1, 44, 1, 46, 1, 48, 1, 50, 1, 52, 1, 54, 1, 56, 1, 58, 1, 60, 1, 62, 1, 64, 1, 66, 1, 68, 1, 70, 1, 72, 1, 74, 1, 76, 1, 78, 1, 80, 1, 82, 1, 84 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Interleaving of A000012 and A005843.

Created to simplify the definition of A129952.

a(n) = abs(A009531(n-1)).

Starting (1, 2, 1, 4,...): square (1 + x - x^2 - x^3 + x^4 + x^5 - ...) = (1 + 2x - x^2 - 4x^3 + x^4 + 6x^5 - ...).

With a(3) taken as 0, a(n+2) = n^k+1 mod 2*n, n>=1, for any k>=2, also for k=n. - Wolfdieter Lang, Dec 21 2011

Also !(n+2) mod n for n>0 where !n is a subfactorial number (A000166). - Michel Lagneau, Sep 05 2012

Greatest common divisor of n-1 and (n-1) mod 2. - Bruno Berselli, Mar 07 2017

REFERENCES

Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).

FORMULA

a(n) = 1 for even n, a(n) = n-1 for odd n.

a(2*k) = 1, a(2*k+1) = 2*k.

G.f.: (1 - x^2 + 2*x^3)/((1 - x)^2*(1 + x)^2).

a(n) = C(n+1,((n+2) mod 2))-1-(-1)^(n+1). - Paolo P. Lava, Aug 29 2007

a(n) = (n - (n - 2)*(-1)^n)/2.  - Bruno Berselli, May 06 2011

E.g.f.: 1 + x^2*U(0)/2 where U(k)= 1 + 2*x*(k+1)/(2*k + 3 - x*(2*k+3)/(x + 4*(k+2)*(k+1)/U(k+1)) (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Oct 20 2012

a(n) = 2*floor(n/2) - (n-1)*(n-1 mod 2). - Wesley Ivan Hurt, Oct 19 2013

a(n) = (n-1)^((1-(-1)^n)/2). - Wesley Ivan Hurt, Mar 21 2015

a(n) = (n-1) - a(a(n-1))*a(n-1), a(0) = 0. - Eli Jaffe, Jun 07 2016

E.g.f.: (x + 1)*cosh(x) - sinh(x). - Ilya Gutkovskiy, Jun 07 2016

MAPLE

A124625:=n->(n-(n-2)*(-1)^n)/2; seq(A124625(k), k=0..100); # Wesley Ivan Hurt, Oct 19 2013

MATHEMATICA

Join[{1}, Riffle[2Range[0, 50], 1]] (* Harvey P. Dale, Nov 02 2011 *)

PROG

(PARI) {for(n=0, 85, print1(if(n%2>0, n-1, 1), ", "))}

(MAGMA) &cat[[1, 2*k]: k in [0..42]];

CROSSREFS

Cf. A000012 (all 1's), A005843 (even numbers), A009531, A093178, A152271.

Sequence in context: A083259 A214060 A009531 * A318775 A317500 A317494

Adjacent sequences:  A124622 A124623 A124624 * A124626 A124627 A124628

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jun 13 2007

EXTENSIONS

More terms from Klaus Brockhaus, Jun 16 2007

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 01:36 EDT 2019. Contains 324223 sequences. (Running on oeis4.)