login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle A064094.
2

%I #10 Sep 27 2024 07:49:16

%S 1,2,3,5,11,34,142,753,4826,36028,305133,2879841,29909422,338479430,

%T 4139716659,54339861531,761150445735,11322139144240,178116143657890,

%U 2952831190016239,51423702126549167,938126972940647198,17883424301972473340,355435808475002747565,7350551776003412371185

%N Row sums of triangle A064094.

%H G. C. Greubel, <a href="/A064095/b064095.txt">Table of n, a(n) for n = 0..475</a>

%t A064094[n_, k_]:= If[k==0 || k==n, 1, Sum[(n-k-j)*Binomial[n-k-1+j, j]*k^j, {j,0,n-k-1}]/(n-k) ];

%t A064095[n_]:= Sum[A064094[n,k], {k,0,n}];

%t Table[A064095[n], {n,0,30}] (* _G. C. Greubel_, Sep 27 2024 *)

%o (PARI)

%o T(n, k)= if (n==k, 1, sum(i=0, n-k-1, (n-k-i)*binomial(n-k-1+i, i)*(k^i)/(n-k))); \\ A064094

%o a(n) = sum(k=0, n, T(n,k));

%o (Magma)

%o function A064094(n,k)

%o if k eq 0 or k eq n then return 1;

%o else return (&+[(n-k-j)*Binomial(n-k-1+j, j)*k^j: j in [0..n-k-1]])/(n-k);

%o end if;

%o end function;

%o A064095:= func< n | (&+[A064094(n,k): k in [0..n]]) >;

%o [A064095(n): n in [0..30]]; // _G. C. Greubel_, Sep 27 2024

%o (SageMath)

%o def A064094(n,k):

%o if (k==0 or k==n): return 1

%o else: return sum((n-k-j)*binomial(n-k-1+j, j)*k^j for j in range(n-k))//(n-k)

%o def A064095(n): return sum(A064094(n,k) for k in range(n+1))

%o [A064095(n) for n in range(31)] # _G. C. Greubel_, Sep 27 2024

%Y Cf. A064094.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Sep 13 2001

%E More terms from _Michel Marcus_, Oct 28 2022