login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064096
Fifth diagonal of triangle A064094.
4
1, 14, 67, 190, 413, 766, 1279, 1982, 2905, 4078, 5531, 7294, 9397, 11870, 14743, 18046, 21809, 26062, 30835, 36158, 42061, 48574, 55727, 63550, 72073, 81326, 91339, 102142, 113765, 126238, 139591, 153854, 169057, 185230, 202403, 220606, 239869, 260222, 281695, 304318, 328121, 353134, 379387, 406910
OFFSET
0,2
FORMULA
a(n) = 1+3*n+5*n^2+5*n^3. Fourth row polynomial (n=3) of Catalan triangle A009766.
G.f.: (1+2*x)*(1+8*x+x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Nov 17 2022
E.g.f.: (1 + 13*x + 20*x^2 + 5*x^3)*exp(x). - G. C. Greubel, Nov 07 2024
MATHEMATICA
CoefficientList[Series[(1 + 2*x)*(1 + 8*x + x^2)/(1 - x)^4, {x, 0, 50}], x] (* Wesley Ivan Hurt, Nov 17 2022 *)
PROG
(Magma) [(n+1)^3 +2*n^2*(2*n+1): n in [0..50]]; // G. C. Greubel, Nov 07 2024
(SageMath)
def A064096(n): return (n+1)^3 +2*n^2*(2*n+1)
[A064096(n) for n in range(51)] # G. C. Greubel, Nov 07 2024
CROSSREFS
Cf. A001844 (fourth diagonal), A009766, A064094.
Sequence in context: A249291 A280401 A221703 * A250141 A071616 A008529
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 13 2001
EXTENSIONS
More terms added by G. C. Greubel, Nov 07 2024
STATUS
approved