login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fifth diagonal of triangle A064094.
4

%I #15 Nov 07 2024 09:53:35

%S 1,14,67,190,413,766,1279,1982,2905,4078,5531,7294,9397,11870,14743,

%T 18046,21809,26062,30835,36158,42061,48574,55727,63550,72073,81326,

%U 91339,102142,113765,126238,139591,153854,169057,185230,202403,220606,239869,260222,281695,304318,328121,353134,379387,406910

%N Fifth diagonal of triangle A064094.

%H G. C. Greubel, <a href="/A064096/b064096.txt">Table of n, a(n) for n = 0..2500</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 1+3*n+5*n^2+5*n^3. Fourth row polynomial (n=3) of Catalan triangle A009766.

%F G.f.: (1+2*x)*(1+8*x+x^2)/(1-x)^4.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - _Wesley Ivan Hurt_, Nov 17 2022

%F E.g.f.: (1 + 13*x + 20*x^2 + 5*x^3)*exp(x). - _G. C. Greubel_, Nov 07 2024

%t CoefficientList[Series[(1 + 2*x)*(1 + 8*x + x^2)/(1 - x)^4, {x, 0, 50}], x] (* _Wesley Ivan Hurt_, Nov 17 2022 *)

%o (Magma) [(n+1)^3 +2*n^2*(2*n+1): n in [0..50]]; // _G. C. Greubel_, Nov 07 2024

%o (SageMath)

%o def A064096(n): return (n+1)^3 +2*n^2*(2*n+1)

%o [A064096(n) for n in range(51)] # _G. C. Greubel_, Nov 07 2024

%Y Cf. A001844 (fourth diagonal), A009766, A064094.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Sep 13 2001

%E More terms added by _G. C. Greubel_, Nov 07 2024