login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071616
Smallest even number divisible by 2n which is nontotient, i.e., in A005277.
2
14, 68, 90, 152, 50, 516, 14, 304, 90, 340, 154, 4008, 26, 308, 90, 608, 34, 2412, 38, 680, 714, 308, 230, 10128, 50, 364, 594, 728, 174, 8340, 62, 1984, 594, 68, 350, 7848, 74, 76, 234, 6800, 246, 5124, 86, 968, 90, 644, 94, 20256, 98, 1100, 510, 728, 318
OFFSET
1,1
COMMENTS
a(n) = 2n*A071615(n).
LINKS
EXAMPLE
n=4: 2n=8 and number of terms in invphi(8k) is 5, 6, 10, 7, 9, 11, 3, 8, 17, 10, 6, 17, 3, 6, 17, 9, 9, 21, 0, 12, ... for k=1,2,...,20,...; zero appears first at k=19, so a(4) = 8k = 152.
MATHEMATICA
invphi[n_, plist_] := Module[{i, p, e, pe, val}, If[plist=={}, Return[If[n==1, {1}, {}]]]; val={}; p=Last[plist]; For[e=0; pe=1, e==0||Mod[n, (p-1)pe/p]==0, e++; pe*=p, val=Join[val, pe*invphi[If[e==0, n, n*p/pe/(p-1)], Drop[plist, -1]]]]; Sort[val]]; invphi[n_] := invphi[n, Select[1+Divisors[n], PrimeQ]]; a[n_] := For[m=1, True, m++, If[invphi[2n*m]=={}, Return[2n*m]]] (* invphi[n, plist] is list of x with phi(x)=n and all prime divisors of x in plist. *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 27 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 28 2002 and by Dean Hickerson, Jun 04 2002
STATUS
approved