login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071618
a(n+1) - 3*a(n) + a(n-1) = (2/3)(1+w^(n+1)+w^(2n+2)), where w = exp(2 Pi I / 3).
4
0, 1, 3, 8, 23, 61, 160, 421, 1103, 2888, 7563, 19801, 51840, 135721, 355323, 930248, 2435423, 6376021, 16692640, 43701901, 114413063, 299537288, 784198803, 2053059121, 5374978560, 14071876561, 36840651123, 96450076808, 252509579303
OFFSET
0,3
COMMENTS
The sequence is closely related to the third term in the continued fraction expansion of 2(F(4n)+F(2n))/phi where F is the Fibonacci sequence. For any k smaller than a(n), k*F(2n)*phi has to be rounded by excess, for any k greater than a(n), k*F(2n)*phi has to be rounded by default. - Thomas Baruchel, Aug 31 2004
LINKS
S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta and K.M. Tamizhmani, Blending two discrete integrability criteria: ...
FORMULA
a(n) = floor ( phi^2n / 2 ) = floor ( (Lucas(2n)-1) / 2 ). - Thomas Baruchel, Aug 31 2004
a(-n) = a(n). a(n) = 2*a(n-1) + a(n-2) + 2*a(n-3) - a(n-4) + 2. - Michael Somos, Mar 08 2007
G.f.: x*(1+x^3) / ((1-x^3)* (1-3*x+x^2)). - Michael Somos, Mar 08 2007
a(0)=0, a(1)=1, a(2)=3, a(3)=8, a(4)=23, a(n) = 3*a(n-1) - a(n-2) + a(n-3) - 3*a(n-4) + a(n-5). - Harvey P. Dale, Dec 18 2011
MATHEMATICA
a[ -1 ] = 0; a[ 0 ] = 1; w = Exp[ 2Pi*I/3 ]; a[ n_ ] := a[ n ] = Simplify[ (2/3)(1 + w^n + w^(2n)) + 3a[ n - 1 ] - a[ n - 2 ] ]; Table[ a[ n ], {n, -1, 28} ]
LinearRecurrence[{3, -1, 1, -3, 1}, {0, 1, 3, 8, 23}, 30] (* or *) CoefficientList[ Series[x (1+x^3)/((1-x^3)*(1-3x+x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Dec 18 2011 *)
PROG
(PARI) u=0; v=1; for(n=1, 30, print1(a=3*v-u+2*!(n%3), " "); u=v; v=a) /* Thomas Baruchel */
(PARI) {a(n)= ( fibonacci(2*n+1)+ fibonacci(2*n-1)+ (n%3>0))/2- 1 } /* Michael Somos, Mar 08 2007 */
(PARI) {a(n)= n=abs(n); polcoeff( x*(1+x^3)/ ((1-x^3)* (1-3*x+x^2)) +x*O(x^n), n)} /* Michael Somos, Mar 08 2007 */
CROSSREFS
Sequence in context: A353169 A027244 A108457 * A318861 A318819 A146998
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 21 2002
STATUS
approved