login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221703
Let K be a local ring with a principal maximal ideal J of nilpotent degree 3 with |K/J|>2; a(n) = number of D-invariant ideals in the ring R_n(K,J).
2
14, 66, 300, 1326, 5750, 24604, 104268, 438678, 1835260, 7643708, 31719544, 131230924, 541549798, 2229948752, 9165030668, 37606175462, 154083290228, 630512206892, 2577105061928, 10522561454372, 42924408013628, 174951432818024, 712513363073720, 2899738101749116, 11793408213411000, 47935401657804504, 194728337295807856
OFFSET
2,1
REFERENCES
G. P. Egorychev et al., Enumeration of ideals of some nilpotent matrix rings, J. Algebra and Applications, 12 (2013), #1250140.
LINKS
FORMULA
Conjecture: (n+2) *(101496*n^2 -9493711*n +47969511) *a(n) +8 *(12687*n^3 +14002447*n^2 -60550969*n -45758370) *a(n-1) +4*( -1420944*n^3 -111890800*n^2 +622530778*n -414036471) *a(n-2) +48*(2*n-7) *(152244*n^2 +6705204*n -18873683) *a(n-3)=0. - R. J. Mathar, Mar 15 2016
MAPLE
f:=(n, s)->(2*s*n-s-3*n+1)*binomial(2*n-2, n-1)-(4/n)*binomial(2*n, n-2)+2^(2*n-1);
[seq(f(n, 3), n=2..40)];
PROG
(Maxima) A221703(n, s):=(2*s*n-s-3*n+1)*binomial(2*n-2, n-1)-(4/n)*binomial(2*n, n-2)+2^(2*n-1)$
makelist(A221703(n, 3), n, 2, 40); /* Martin Ettl, Jan 24 2013 */
CROSSREFS
Sequence in context: A336744 A249291 A280401 * A064096 A250141 A071616
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 22 2013
STATUS
approved