login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221706
Kochanski approximates to sqrt(2) starting with R_0=3, S_0=2.
0
2, 4, 4, 15, 17, 77, 101, 119, 143, 250, 362, 1401, 31168, 88629, 184654, 259251, 298769, 4196069, 38538873, 616984562, 1975413034, 5345718056, 27843871196, 54516286512, 334398528973, 445879679625, 495957494385, 2450869042060, 2629541150528, 4088114099884
OFFSET
0,1
LINKS
Henryk Fuks, Adam Adamandy Kochanski's approximations of pi: reconstruction of the algorithm, arXiv preprint arXiv:1111.1739, 2011. Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.
FORMULA
Definitions 1 and 2 of Fuks (2011) give formulas.
PROG
(PARI)
galpha(alpha, R, S) = {floor((alpha - floor(alpha))/(R - alpha*S)); }
fuks() = { n = 29; default(realprecision, 200); alpha = sqrt(2); R = 3; S = 2; x = galpha(alpha, R, S); print1(x, ", "); for (i=1, n, R = R*(x+1) + floor(alpha); S = S*(x+1) + 1; x = galpha(alpha, R, S); print1(x, ", "); ); }
\\ Michel Marcus, Feb 07 2013
CROSSREFS
Cf. A191642.
Sequence in context: A193848 A371254 A218974 * A368585 A145891 A077815
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 23 2013
EXTENSIONS
More terms from Michel Marcus, Feb 07 2013
STATUS
approved