login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191642
Kochański's (or Kochanski's) sequence.
6
15, 4697, 5548, 14774, 33696, 61072, 111231, 115985, 173819, 563316, 606004, 1751458, 1952544, 3046715, 4397195, 45051907, 653475595, 734915444, 1241384578, 2438767174, 2557084119, 5090226634, 6088149715, 18483120028, 44254634530, 48502484589, 70835215004
OFFSET
1,1
COMMENTS
The sequence of "genitores" used to generate approximants of Pi.
REFERENCES
A. A. Kochański, Observationes cyclometricae ad facilitandam praxin accomodatae, Acta Eruditorum 4 (1685) 394-398.
LINKS
Henryk Fuks, Adam Adamandy Kochanski's approximations of pi: reconstruction of the algorithm, arXiv preprint arXiv:1111.1739 [math.HO], 2011-2014; Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.
Henryk Fukś, Magic Squares of Subtraction of Adam Adamandy Kochański, in Research in History and Philosophy of Mathematics, Proceedings of the Canadian Society for History and Philosophy of Mathematics (CSHPM), 2017, pp. 81-95.
Adam Adamany Kochański, Observationes Cyclometricae ad facilitandam Praxin accomodatae, original Latin text from Acta Eruditorum 4, 394-396 (1685), with English translation and annotations (by Henryk Fuks); arXiv:1106.1808 [math.HO], 2011.
MAPLE
Digits := 100;
alpha:=Pi;
a:= floor(alpha);
g:=(R, S)->floor( (alpha-a)/(R-alpha*S));
S[1]:=floor(1/(alpha-a));
R[1]:=1+a*S[1];
for n from 2 to 10 do
S[n] := S[n-1]*(g(R[n-1], S[n-1])+1)+1:
R[n] := R[n-1]*(g(R[n-1], S[n-1])+1)+a:
end do:
seq(g(R[i], S[i]), i = 1 .. 10);
MATHEMATICA
g[x_, y_] = Floor[N[(Pi - 3)/(x - Pi*y), 200]];
R = 22; S = 7;
Reap[For[i = 1, i <= 27, i++, b = g[R, S]; S = S*(b+1)+1; R = R*(b+1)+3; Print[b]; Sow[b]]][[2, 1]]; (* Jean-François Alcover, Feb 21 2019, from PARI *)
PROG
(PARI)
default(realprecision, 1000);
g(x, y)=floor( (Pi-3)/(x-Pi*y))
R=22; S=7; for(i=1, 35, b=g(R, S); S=S*(b+1)+1; R=R*(b+1)+3; print1(b, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Henryk Fuks, Jun 09 2011
EXTENSIONS
I added the unaccented version of the name to the definition, to make it easier to search for. - N. J. A. Sloane, Jan 12 2012
STATUS
approved