login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191642 Kochański's (or Kochanski's) sequence. 3
15, 4697, 5548, 14774, 33696, 61072, 111231, 115985, 173819, 563316, 606004, 1751458, 1952544, 3046715, 4397195, 45051907, 653475595, 734915444, 1241384578, 2438767174, 2557084119, 5090226634, 6088149715, 18483120028, 44254634530, 48502484589, 70835215004 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The sequence of "genitores" used to generate approximants of Pi.

REFERENCES

A. A. Kochański, Observationes cyclometricae ad facilitandam praxin accomodatae, Acta Eruditorum 4 (1685) 394-398.

LINKS

Klaus Brockhaus, Table of n, a(n) for n = 1..1000

Henryk Fuks, Adam Adamandy Kochanski's approximations of pi: reconstruction of the algorithm, arXiv preprint arXiv:1111.1739 [math.HO], 2011-2014; Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.

Henryk Fukś, Magic Squares of Subtraction of Adam Adamandy Kochański, in Research in History and Philosophy of Mathematics, Proceedings of the Canadian Society for History and Philosophy of Mathematics (CSHPM), 2017, pp. 81-95.

Adam Adamany Kochański, Observationes Cyclometricae ad facilitandam Praxin accomodatae, original Latin text from Acta Eruditorum 4, 394-396 (1685), with English translation and annotations (by Henryk Fuks); arXiv:1106.1808 [math.HO], 2011.

Wikipedia, Adam Adamandy Kochański

MAPLE

Digits := 100;

alpha:=Pi;

a:= floor(alpha);

g:=(R, S)->floor( (alpha-a)/(R-alpha*S));

S[1]:=floor(1/(alpha-a));

R[1]:=1+a*S[1];

for n from 2 to 10 do

S[n] := S[n-1]*(g(R[n-1], S[n-1])+1)+1:

R[n] := R[n-1]*(g(R[n-1], S[n-1])+1)+a:

end do:

seq(g(R[i], S[i]), i = 1 .. 10);

MATHEMATICA

g[x_, y_] = Floor[N[(Pi - 3)/(x - Pi*y), 200]];

R = 22; S = 7;

Reap[For[i = 1, i <= 27, i++, b = g[R, S]; S = S*(b+1)+1; R = R*(b+1)+3; Print[b]; Sow[b]]][[2, 1]]; (* Jean-François Alcover, Feb 21 2019, from PARI *)

PROG

(PARI)

default(realprecision, 1000);

g(x, y)=floor( (Pi-3)/(x-Pi*y))

R=22; S=7; for(i=1, 35, b=g(R, S); S=S*(b+1)+1; R=R*(b+1)+3; print1(b, ", "))

CROSSREFS

Sequence in context: A027513 A287037 A229931 * A206387 A198903 A249966

Adjacent sequences:  A191639 A191640 A191641 * A191643 A191644 A191645

KEYWORD

nonn

AUTHOR

Henryk Fuks, Jun 09 2011

EXTENSIONS

I added the unaccented version of the name to the definition, to make it easier to search for. - N. J. A. Sloane, Jan 12 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 21:20 EST 2020. Contains 332195 sequences. (Running on oeis4.)