login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145891
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k adjacent pairs of the form (odd,even) (0<=k<=floor(n/2)).
3
1, 1, 1, 1, 2, 4, 4, 16, 4, 12, 72, 36, 36, 324, 324, 36, 144, 1728, 2592, 576, 576, 9216, 20736, 9216, 576, 2880, 57600, 172800, 115200, 14400, 14400, 360000, 1440000, 1440000, 360000, 14400, 86400, 2592000, 12960000, 17280000, 6480000, 518400
OFFSET
0,5
COMMENTS
Also number of permutations of {1,2,...,n} having k adjacent pairs of the form (even,odd). Example: T(3,1) = 4 because we have 123, 213, 231 and 321.
Row n contains 1+floor(n/2) entries.
Mirror image of A134434.
Sum of entries in row n = n! = A000142(n).
Sum_{k>=0} k*T(n,k) = A077613(n).
FORMULA
T(2n,k) = [n!*C(n,k)]^2; T(2n+1,k) = n!*(n+1)!*C(n,k)*C(n+1,k).
EXAMPLE
T(3,1) = 4 because we have 123, 132, 312 and 321.
Triangle starts:
1;
1;
1, 1;
2, 4;
4, 16, 4;
12, 72, 36;
36, 324, 324, 36;
...
MAPLE
T:=proc(n, k) if `mod`(n, 2) = 0 then factorial((1/2)*n)^2*binomial((1/2)*n, k)^2 else factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, k)*binomial((1/2)*n+1/2, k) end if end proc: for n from 0 to 11 do seq(T(n, k), k =0..floor((1/2)*n)) end do; # yields sequence in triangular form
MATHEMATICA
T[n_, k_]:=If[EvenQ[n], Floor[(n/2)!Binomial[n/2, k]]^2, ((n-1)/2)!((n+1)/2)!Binomial[(n-1)/2, k]Binomial[(n+1)/2, k]]; Table[T[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}]//Flatten (* Stefano Spezia, Jul 12 2024 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Nov 30 2008
STATUS
approved