login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145893
Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} such that j and p(j) are of opposite parities for k values of j (0<=k<=n).
8
1, 1, 0, 1, 0, 1, 2, 0, 4, 0, 4, 0, 16, 0, 4, 12, 0, 72, 0, 36, 0, 36, 0, 324, 0, 324, 0, 36, 144, 0, 1728, 0, 2592, 0, 576, 0, 576, 0, 9216, 0, 20736, 0, 9216, 0, 576, 2880, 0, 57600, 0, 172800, 0, 115200, 0, 14400, 0, 14400, 0, 360000, 0, 1440000, 0, 1440000, 0, 360000, 0, 14400
OFFSET
0,7
COMMENTS
Mirror image of A145894.
Without the 0's it is the triangle of A145891.
Sum of entries in row n = n! = A000142(n).
Columns k=0,2,4,8,10,12 give: A010551, A226282, A226283, A226284, A226285, A226286. - Alois P. Heinz, May 29 2014
LINKS
FORMULA
T(2n,2k) = [n!*C(n,k)]^2; T(2n+1,2k) = n! (n+1)! C(n,k) C(n+1,k); elsewhere T(n,k)=0.
EXAMPLE
T(3,2) = 4 because we have 132, 312, 213 and 231.
Triangle starts:
1;
1, 0;
1, 0, 1;
2, 0, 4, 0;
4, 0, 16, 0, 4;
12, 0, 72, 0, 36, 0;
36, 0, 324, 0, 324, 0, 36;
...
MAPLE
T:=proc(n, k) if `mod`(n, 2) = 0 and `mod`(k, 2) = 0 then factorial((1/2)*n)^2*binomial((1/2)*n, (1/2)*k)^2 elif `mod`(n, 2) = 1 and `mod`(k, 2) = 0 then factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial((1/2)*n-1/2, (1/2)*k)*binomial((1/2)*n+1/2, (1/2)*k) else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := Which[EvenQ[n] && EvenQ[k], (n/2)!^2*Binomial[n/2, k/2]^2, OddQ[n] && EvenQ[k], (n/2-1/2)!*(n/2+1/2)!*Binomial[n/2-1/2, k/2] * Binomial[n/2+1/2, k/2], True, 0]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Nov 30 2008
STATUS
approved