login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145895
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and having k UDU and DUD's (here U=(1,1), D=(1,-1); 0 <= k <= 2n-2).
1
1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 2, 4, 2, 4, 1, 0, 1, 4, 8, 10, 8, 4, 6, 1, 0, 1, 8, 20, 26, 24, 25, 12, 7, 8, 1, 0, 1, 17, 48, 70, 84, 70, 54, 47, 16, 11, 10, 1, 0, 1, 37, 116, 197, 244, 241, 224, 141, 104, 76, 20, 16, 12, 1, 0, 1, 82, 286, 535, 728, 816, 734, 609, 472, 246, 180, 112, 24, 22
OFFSET
0,7
COMMENTS
Row n contains 2n-1 entries (n>=1).
Row sums are the Catalan numbers (A000108).
T(n,0) = A004148(n-1) (the secondary structure numbers).
Sum_{k=0..2n-2} k*T(n,k) = 2*binomial(2n-2, n-2) = 2*A001791(n-1).
LINKS
Andrei Asinowski, Cyril Banderier, On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.
FORMULA
G.f.: c(z/(1+(1-t^2)z+(1-t)^2*z^2)), where c(z) = (1-sqrt(1-4z))*(2z) is the g.f. of the Catalan numbers (A000108).
The trivariate g.f., with z marking semilength, t marking number of UDU's and s marking number of DUD's is c(z/(1+(1-ts)*z + (1-t)(1-s)z^2)), where c(z) = (1-sqrt(1-4z))*(2z) is the g.f. of the Catalan numbers (A000108).
EXAMPLE
T(4,3) = 4 because we have UDUDUUDD, UUDDUDUD, UDUUDUDD and UUDUDDUD.
Triangle starts:
1;
1;
1, 0, 1;
1, 2, 1, 0, 1;
2, 4, 2, 4, 1, 0, 1;
4, 8, 10, 8, 4, 6, 1, 0, 1;
MAPLE
c := proc (z) options operator, arrow: (1/2-(1/2)*sqrt(1-4*z))/z end proc: G := c(z/(1+(1-t^2)*z+(1-t)^2*z^2)): Gser := simplify(series(G, z = 0, 12)): for n from 0 to 9 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 9 do seq(coeff(P[n], t, k), k = 0 .. 2*n-2) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2, 4][t])*
`if`(t=3, z, 1)+b(x-1, y-1, [5, 3, 5, 3, 5][t])*`if`(t=4, z, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
seq(T(n), n=1..12); # Alois P. Heinz, Jun 04 2014
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, {2, 2, 4, 2, 4}[[t]]]*If[t == 3, z, 1] + b[x-1, y-1, {5, 3, 5, 3, 5}[[t]]]*If[t == 4, z, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 10 2008
STATUS
approved