login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128201
Union of positive squares and the odd numbers.
6
1, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123
OFFSET
1,2
COMMENTS
Range of A128200.
Positive numbers n such that n^((1 + n)/2) is an integer. - Gionata Neri, May 07 2016
LINKS
FORMULA
a(n) = f(n,1,1,2), where f(n,i,m,x) = if i=n then m; else if m+1=x^2 then f(n,i+1,m+1,x); else if m+1>x^2 then f(n,i+1,m+1,x+2); else f(n,i+1,m+2,x).
Set R(n) = 2*n - round(sqrt(2*n)); then a(n) = R(n) + sign(frac(sqrt(R(n)))) * (not(R(n) mod 2)). - Gerald Hillier, Apr 16 2015
MATHEMATICA
f[n_] := Block[{s = Range[n]^2, t}, Union[s, Range[1, Last@ s, 2]] // Sort]; f@ 12 (* Michael De Vlieger, Apr 16 2015 *)
PROG
(PARI) A128201(n)=!(bittest(n=2*n-round(sqrt(2*n)), 0)||issquare(n))+n \\ Based on Hiliers's formula. - M. F. Hasler, Apr 19 2015
(PARI) is_A128201(n)=bittest(n, 0)||issquare(n) \\ M. F. Hasler, Apr 19 2015
(Python)
from math import isqrt
def A128201(n):
def f(x): return n+(x>>1)-(isqrt(x)>>1)
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Oct 02 2024
CROSSREFS
Partial sums given by A157130. - Gerald Hillier, Feb 25 2009
See A176693 for the union of even numbers and the squares. - M. F. Hasler, Apr 19 2015
Sequence in context: A190941 A284752 A161153 * A347301 A233514 A096262
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Mar 04 2007
STATUS
approved