Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 24 2022 15:54:10
%S 1,2,13,226,7889,458026,39684637,4788052298,766526598721,
%T 157108817646514,40104442275129101,12472587843118746322,
%U 4641978487740740993233,2036813028164774540010266,1040451608604560812273060189,612098707457003526384666111226
%N a(n) = Sum_{k=0..n} binomial(n,k) * n^k * k!.
%H Alois P. Heinz, <a href="/A277452/b277452.txt">Table of n, a(n) for n = 0..232</a>
%F a(n) = exp(1/n) * n^n * Gamma(n+1, 1/n).
%F a(n) ~ n^n * n!.
%F a(n) = n! * [x^n] exp(x)/(1 - n*x). - _Ilya Gutkovskiy_, Sep 18 2018
%F a(n) = floor(n^n*n!*exp(1/n)), n > 0. - _Peter McNair_, Dec 20 2021
%p a := n -> simplify(hypergeom([1, -n], [], -n)):
%p seq(a(n), n=0..15); # _Peter Luschny_, Oct 03 2018
%p # second Maple program:
%p b:= proc(n, k) option remember;
%p 1 + `if`(n>0, k*n*b(n-1, k), 0)
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..17); # _Alois P. Heinz_, May 09 2020
%t Flatten[{1, Table[Sum[Binomial[n, k]*n^k*k!, {k, 0, n}], {n, 1, 20}]}]
%o (PARI) a(n) = sum(k=0, n, binomial(n,k) * n^k * k!); \\ _Michel Marcus_, Sep 18 2018
%Y Main diagonal of A320031.
%Y Cf. A086331, A277373, A277423, A277453.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Oct 16 2016