login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230339
Numerator of Sum_{k=1..n} 1/(k(k+1)(k+2)(k+3)) = Sum_{k=1..n} 1/Pochhammer(k,4).
3
0, 1, 1, 19, 17, 55, 83, 119, 82, 73, 95, 121, 227, 559, 679, 815, 484, 1139, 443, 171, 295, 2023, 2299, 2599, 1462, 3275, 3653, 451, 749, 551, 5455, 5983, 3272, 7139, 7769, 8435, 1523, 3293, 3553, 11479, 6170, 13243, 14189, 15179, 8107, 5765
OFFSET
0,4
REFERENCES
L. B. W. Jolley, Summation of Series, Second revised ed., Dover, 1961, p.38, (202) and (201).
LINKS
Eric Weisstein's MathWorld, Pochhammer Symbol
FORMULA
Numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) (from the generic formula Sum_{k=1..n} 1/Pochhammer(k, m) = 1/((m-1)*(m-1)!) - 1/((m-1)*Pochhammer(n+1, m-1)) with m = 4).
G.f. for the rationals r(n) = (1/18)*n*(11+n^2+6*n)/((1+n)*(n+2)*(n+3)) = a(n)/A230340(n): (1/18)*(1 - hypergeometric([1, 3], [4], -x/(1-x)))/(1-x) = (6*x - 15*x^2 + 11*x^3 + 6*(1 - 3*x + 3*x^2 - x^3)*log(1-x))/(36*x^3*(1-x)). - Wolfdieter Lang, Mar 08 2018
a(n) = numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))). - Colin Barker, Jul 30 2019
EXAMPLE
1/(1*2*3*4) + 1/(2*3*4*5) + 1/(3*4*5*6) = 19/360, so a(3) = 19.
The rationals r(n) = a(n)/A230340(n) begin: 0, 1/24, 1/20, 19/360, 17/315, 55/1008, 83/1512, 119/2160, 82/1485, 73/1320, 95/1716, 121/2184, 227/4095, 559/10080, 679/12240, 815/14688, ... - Wolfdieter Lang, Mar 08 2018
MATHEMATICA
a[n_] := Numerator[1/18 - 1/(3*(n+1)*(n+2)*(n+3))]; Table[a[n], {n, 0, 100}]
PROG
(PARI) a(n) = numerator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) \\ Colin Barker, Jul 30 2019
CROSSREFS
Cf. A001563, A052762, A094258, A125650, A230328, A230340 (denominators).
Sequence in context: A241525 A321332 A109410 * A022975 A023461 A305238
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved