login
A241525
a(n) is the smallest start of a run of exactly n consecutive primes such that the sum of the digits of each prime is composite.
0
19, 17, 13, 521, 509, 503, 499, 491, 14153, 25793, 25771, 37663, 37657, 98729, 98717, 98713, 98711, 98689, 98669, 98663, 98641, 98639, 98627, 98621, 98597, 98573, 69794393, 69794383, 268684679, 268684651, 268684627, 329788829, 545497787, 545497769, 545497759, 545497753, 545497747, 545497741, 545497727, 545497723, 545497691, 545497681, 545497679, 545497637, 545497633, 545497609
OFFSET
1,1
COMMENTS
No more terms below 2^32
EXAMPLE
a(3)=13 because the run of the 3 consecutive primes {13, 17, 19} is such that the sum of digits for each prime is {4, 8, 10}.
PROG
(UBASIC)
10 P=1:KM=0:K=0:'puzzle 1290, Meller
20 P=nxtprm(P):if P>2^32-20 then end
30 gosub *SODP:if S<>prmdiv(S) then K=K+1:Q=P:goto 20
40 if K>KM then print K, Q:KM=K
50 K=0:goto 20
200 *SODP:S=0:L=alen(P)
210 for I=1 to L:D=val(mid(str(P), I+1, 1))
220 S=S+D:next I
230 return
CROSSREFS
Cf. A240598.
Sequence in context: A135734 A215021 A215085 * A321332 A109410 A230339
KEYWORD
nonn,base
AUTHOR
Carlos Rivera, Apr 24 2014
STATUS
approved