Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 05 2014 11:23:33
%S 19,17,13,521,509,503,499,491,14153,25793,25771,37663,37657,98729,
%T 98717,98713,98711,98689,98669,98663,98641,98639,98627,98621,98597,
%U 98573,69794393,69794383,268684679,268684651,268684627,329788829,545497787,545497769,545497759,545497753,545497747,545497741,545497727,545497723,545497691,545497681,545497679,545497637,545497633,545497609
%N a(n) is the smallest start of a run of exactly n consecutive primes such that the sum of the digits of each prime is composite.
%C No more terms below 2^32
%e a(3)=13 because the run of the 3 consecutive primes {13, 17, 19} is such that the sum of digits for each prime is {4, 8, 10}.
%o (UBASIC)
%o 10 P=1:KM=0:K=0:'puzzle 1290, Meller
%o 20 P=nxtprm(P):if P>2^32-20 then end
%o 30 gosub *SODP:if S<>prmdiv(S) then K=K+1:Q=P:goto 20
%o 40 if K>KM then print K, Q:KM=K
%o 50 K=0:goto 20
%o 200 *SODP:S=0:L=alen(P)
%o 210 for I=1 to L:D=val(mid(str(P), I+1, 1))
%o 220 S=S+D:next I
%o 230 return
%Y Cf. A240598.
%K nonn,base
%O 1,1
%A _Carlos Rivera_, Apr 24 2014