login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A230340
Denominator of Sum_{k=1..n} 1/(k(k+1)(k+2)(k+3)) = Sum_{k=1..n} 1/Pochhammer(k,4).
2
1, 24, 20, 360, 315, 1008, 1512, 2160, 1485, 1320, 1716, 2184, 4095, 10080, 12240, 14688, 8721, 20520, 7980, 3080, 5313, 36432, 41400, 46800, 26325, 58968, 65772, 8120, 13485, 9920, 98208, 107712, 58905, 128520, 139860, 151848, 27417, 59280
OFFSET
0,2
LINKS
Eric Weisstein's MathWorld, Pochhammer Symbol
FORMULA
Denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))).
EXAMPLE
1/(1*2*3*4) + 1/(2*3*4*5) + 1/(3*4*5*6) = 19/360, so a(3) = 360.
MATHEMATICA
a[n_] := Denominator[1/18 - 1/(3*(n+1)*(n+2)*(n+3))]; Table[a[n], {n, 0, 100}]
PROG
(PARI) a(n) = denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))) \\ Colin Barker, Jul 30 2019
(Magma) [Denominator(1/18 - 1/(3*(n+1)*(n+2)*(n+3))):n in [0..100]]; // Marius A. Burtea, Jul 30 2019
CROSSREFS
Cf. A001563, A052762, A094258, A125650, A230328, A230339 (numerators).
Sequence in context: A357973 A357971 A128560 * A292102 A022980 A023466
KEYWORD
nonn,frac,easy
AUTHOR
STATUS
approved