login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147596
a(n) is the number whose binary representation is A138145(n).
4
1, 3, 7, 15, 31, 63, 119, 231, 455, 903, 1799, 3591, 7175, 14343, 28679, 57351, 114695, 229383, 458759, 917511, 1835015, 3670023, 7340039, 14680071, 29360135, 58720263, 117440519, 234881031, 469762055, 939524103, 1879048199, 3758096391
OFFSET
1,2
FORMULA
a(n) = 7*(2^(n-3) + 1) if n >= 6. - Hagen von Eitzen, Jun 02 2009
From Colin Barker, Sep 15 2013: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), for n >= 8.
G.f.: x*(1-2*x^2)*(1+2*x^2+4*x^4) / ((1-x)*(1-2*x)). (End)
E.g.f.: (7/8)*(8*exp(x) + exp(2*x)) - (1/8)*(63 + 62*x + 30*x^2) - 7*x^3/6 - x^4/4 - x^5/30. - G. C. Greubel, Oct 25 2022
MATHEMATICA
Join[{1, 3, 7, 15, 31}, 7*(1+2^(Range[6, 40] -3))] (* G. C. Greubel, Oct 25 2022 *)
PROG
(PARI) Vec(-x*(2*x^2-1)*(4*x^4+2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
(Magma) [1, 3, 7, 15, 31] cat [7*(1+2^(n-3)): n in [6..40]]; // G. C. Greubel, Oct 25 2022
(SageMath)
def A147596(n): return 7*(1+2^(n-3)) -(1/8)*(63*int(n==0) +62*int(n==1) +60*int(n ==2)) -(7*int(n==3) +6*int(n==4) +4*int(n==5))
[A147596(n) for n in range(1, 40)] # G. C. Greubel, Oct 25 2022
KEYWORD
base,easy,nonn
AUTHOR
Omar E. Pol, Nov 08 2008
EXTENSIONS
More terms from Hagen von Eitzen, Jun 02 2009
STATUS
approved