login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115567 a(n) = C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1). 3
0, 1, 3, 7, 15, 31, 63, 126, 246, 465, 847, 1485, 2509, 4095, 6475, 9948, 14892, 21777, 31179, 43795, 60459, 82159, 110055, 145498, 190050, 245505, 313911, 397593, 499177, 621615, 768211, 942648, 1149016, 1391841, 1676115, 2007327, 2391495 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
a(n) = n + T(n) + Tet(n) + Ptop(n) + 5-Simplex(n) + 6-Simplex(n), where T(n) = n-th triangular number A000217(n), Tet(n) = n-th tetrahedral number A000292(n), Ptop(n) = n-th pentatope number A000332(n), 5-Simplex(n) = n-th 5-simplex number A000389(n), 6-Simplex(n) = n-th 6-simplex number A000579(n).
By analogy to A004006, A055795 and A057703, I presume that a(n) = Answer to the question: if you have a tall building and 6 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries?
LINKS
Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. [Parthasarathy Nambi, Sep 30 2009]
FORMULA
a(n) = C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).
a(n) = A000579(n) + A000389(n) + A000332(n) + A000292(n) + A000217(n) + n.
a(n) = A000579(n) + A057703(n).
G.f.: x*(1-x+x^2)*(1-3*x+3*x^2)/(1-x)^7. - Colin Barker, Mar 16 2012
From G. C. Greubel, Nov 25 2017: (Start)
a(n) = n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720.
E.g.f.: x*(720 + 360*x + 120*x^2 + 30*x^3 + 6*x^4 + x^5)*exp(x)/720. (End)
MAPLE
seq(sum(binomial(n, k), k=1..6), n=0..36); # Zerinvary Lajos, Dec 13 2007
MATHEMATICA
Table[n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720, {n, 0, 30}] (* G. C. Greubel, Nov 25 2017 *)
PROG
(Sage) [binomial(n, 2)+binomial(n, 4)+binomial(n, 6) for n in range(1, 38)] # Zerinvary Lajos, May 17 2009
(Sage) [binomial(n, 1)+binomial(n, 3)+binomial(n, 5)+binomial(n, 2)+binomial(n, 4)+binomial(n, 6) for n in range(0, 37)] # Zerinvary Lajos, May 17 2009
(PARI) for(n=0, 30, print1(n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720, ", ")) \\ G. C. Greubel, Nov 25 2017
(Magma) [n*(n + 1)*(n^4 - 10*n^3 + 65*n^2 - 140*n + 444)/720: n in [0..30]]; // G. C. Greubel, Nov 25 2017
CROSSREFS
Sequence in context: A043734 A151359 A147596 * A275715 A273672 A043740
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 12 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:30 EST 2023. Contains 367679 sequences. (Running on oeis4.)