login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033437 Number of edges in 5-partite Turán graph of order n. 15
0, 0, 1, 3, 6, 10, 14, 19, 25, 32, 40, 48, 57, 67, 78, 90, 102, 115, 129, 144, 160, 176, 193, 211, 230, 250, 270, 291, 313, 336, 360, 384, 409, 435, 462, 490, 518, 547, 577, 608, 640, 672, 705, 739, 774, 810, 846, 883, 921, 960, 1000, 1040, 1081, 1123, 1166, 1210, 1254 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Apart from the initial term this is the elliptic troublemaker sequence R_n(1,5) (also sequence R_n(4,5)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 12 2013

REFERENCES

R. L. Graham et al., eds., Handbook of Combinatorics, Vol. 2, p. 1234.

LINKS

Table of n, a(n) for n=0..56.

K. E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials arXiv:1108.3051 [math.NT], 2011-2014.

Eric Weisstein's World of Mathematics, Turán Graph

Wikipedia, Turán graph

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).

FORMULA

G.f.: (x^5+x^4+x^3+x^2)/((1-x^5)*(1-x)^2).

a(n) = Sum_{k=0..n} A011558(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009

a(n) = floor( 2n^2/5 ). - Wesley Ivan Hurt, Jun 20 2013

a(n) = Sum_{i=1..n} floor(4*i/5). - Wesley Ivan Hurt, Sep 12 2017

MATHEMATICA

Table[Floor[2n^2/5], {n, 0, 60}]

PROG

(MAGMA) [2*n^2 div 5: n in [0..60]]; // Vincenzo Librandi, Apr 20 2015

(PARI) a(n)=2*n^2\5 \\ Charles R Greathouse IV, Apr 20 2015

CROSSREFS

Cf. A002620, A000212, A033436, A033438, A033439, A033440, A033441, A033442, A033443, A033444. - Reinhard Zumkeller, Nov 30 2009

Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Cf. A279169.

Sequence in context: A253620 A282731 A134919 * A226185 A310071 A024928

Adjacent sequences:  A033434 A033435 A033436 * A033438 A033439 A033440

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 01:39 EDT 2018. Contains 313840 sequences. (Running on oeis4.)