login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033444 Number of edges in 12-partite Turán graph of order n. 12
0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 77, 89, 102, 116, 131, 147, 164, 182, 201, 221, 242, 264, 286, 309, 333, 358, 384, 411, 439, 468, 498, 529, 561, 594, 627, 661, 696, 732, 769, 807, 846, 886, 927, 969, 1012, 1056, 1100, 1145, 1191, 1238, 1286 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, Turán Graph [Reinhard Zumkeller, Nov 30 2009]

Wikipedia, Turán graph [Reinhard Zumkeller, Nov 30 2009]

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,0,1,-2,1).

FORMULA

a(n) = Sum_{k=0..n} A168185(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]

G.f.: -x^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)^3*(x+1)*(x^2-x+1)*(x^2+1)*(x^2+x+1)*(x^4-x^2+1)). [Colin Barker, Aug 09 2012]

a(n) = Sum_{i=1..n} floor(11*i/12). - Wesley Ivan Hurt, Sep 12 2017

MATHEMATICA

CoefficientList[Series[- x^2 (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x + 1) (x^2 - x + 1) (x^2 + 1) (x^2 + x + 1) (x^4 - x^2 + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)

CROSSREFS

Cf. A002620, A000212, A033436, A033437, A033438, A033439, A033440, A033441, A033442, A033443. [Reinhard Zumkeller, Nov 30 2009]

Sequence in context: A262544 A033443 A130490 * A061791 A268291 A105336

Adjacent sequences:  A033441 A033442 A033443 * A033445 A033446 A033447

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vincenzo Librandi, Oct 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 18:46 EST 2018. Contains 299584 sequences. (Running on oeis4.)