login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033443
Number of edges in 11-partite Turán graph of order n.
10
0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 65, 76, 88, 101, 115, 130, 146, 163, 181, 200, 220, 240, 261, 283, 306, 330, 355, 381, 408, 436, 465, 495, 525, 556, 588, 621, 655, 690, 726, 763, 801, 840, 880, 920, 961, 1003, 1046, 1090, 1135, 1181, 1228, 1276
OFFSET
0,4
REFERENCES
Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.
LINKS
Eric Weisstein's World of Mathematics, Turán Graph [Reinhard Zumkeller, Nov 30 2009]
Wikipedia, Turán graph [Reinhard Zumkeller, Nov 30 2009]
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,1,-2,1).
FORMULA
a(n) = Sum_{k=0..n} A145568(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)/((x-1)^3*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(10*i/11). - Wesley Ivan Hurt, Sep 12 2017
MATHEMATICA
CoefficientList[Series[- x^2 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Oct 20 2013
STATUS
approved