login
A033442
Number of edges in 10-partite Turán graph of order n.
10
0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 54, 64, 75, 87, 100, 114, 129, 145, 162, 180, 198, 217, 237, 258, 280, 303, 327, 352, 378, 405, 432, 460, 489, 519, 550, 582, 615, 649, 684, 720, 756, 793, 831, 870, 910, 951, 993, 1036, 1080, 1125, 1170, 1216, 1263
OFFSET
0,4
REFERENCES
Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.
LINKS
Eric Weisstein's World of Mathematics, Turán Graph [Reinhard Zumkeller, Nov 30 2009]
Wikipedia, Turán graph [Reinhard Zumkeller, Nov 30 2009]
FORMULA
a(n) = Sum_{k=0..n} A168184(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x^2+x+1)*(x^6+x^3+1)/((x-1)^3*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(9*i/10). - Wesley Ivan Hurt, Sep 12 2017
MATHEMATICA
CoefficientList[Series[- x^2 (x^2 + x + 1) (x^6 + x^3 + 1)/((x - 1)^3 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Oct 20 2013
STATUS
approved