login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362438
a(n) = n^2 + 2^(n-1).
1
2, 6, 13, 24, 41, 68, 113, 192, 337, 612, 1145, 2192, 4265, 8388, 16609, 33024, 65825, 131396, 262505, 524688, 1049017, 2097636, 4194833, 8389184, 16777841, 33555108, 67109593, 134218512, 268436297, 536871812, 1073742785, 2147484672, 4294968385, 8589935748, 17179870409, 34359739664, 68719478105, 137438954916
OFFSET
1,1
REFERENCES
GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 79.
FORMULA
From Chai Wah Wu, Apr 23 2023: (Start)
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4) for n > 4.
G.f.: x*(-x^3 + x^2 - 4*x + 2)/((x - 1)^3*(2*x - 1)). (End)
MATHEMATICA
Table[n^2 + 2^(n-1), {n, 50}] (* Paolo Xausa, Jul 20 2024 *)
PROG
(Python)
def A362438(n): return n**2+(1<<n-1) # Chai Wah Wu, Apr 23 2023
CROSSREFS
See A001580 for another version.
Sequence in context: A178532 A003600 A283551 * A000135 A281865 A267698
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 21 2023
STATUS
approved