The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275741 Sum of Wilson and Lerch remainders of n-th prime. 1
 1, 3, 10, 6, 6, 17, 15, 11, 25, 38, 9, 37, 47, 39, 86, 58, 107, 50, 101, 36, 98, 45, 123, 92, 170, 57, 80, 72, 158, 194, 194, 67, 78, 133, 120, 302, 144, 158, 128, 97, 91, 303, 76, 191, 139, 178, 302, 117, 242, 179, 335, 390, 362, 197, 290, 314, 327, 227, 429 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS a(n) = 0 if and only if prime(n) is in both A007540 and A197632, i.e., prime(n) is simultaneously a Wilson prime and a Lerch prime. For n > 2, a(n) = 0 if and only if A027641(3*p-3) / A027642(3*p-3)-1 + 1/p == 0 (mod p^2), where p = prime(n) (cf. Dobson, 2016, theorem 2). René Gy (see links) has shown that a number is simultaneously a Lerch prime and a Wilson prime if and only if it satisfies the congruence (p - 1)! + 1 == 0 (mod p^3). - John Blythe Dobson, Feb 23 2018 LINKS Table of n, a(n) for n=2..60. John Blythe Dobson, A Characterization of Wilson-Lerch Primes, Integers, 16 (2016), A51. René Gy, Generalized Lerch Primes, Integers 18 (2018), A10. J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012. FORMULA a(n) = A002068(n) + A197631(n). MATHEMATICA a[n_] := Module[{p = Prime[n]}, Mod[((p-1)!+1)/p, p] + Mod[(Sum[(k^(p-1)-1)/p, {k, 1, p-1}] - ((p-1)!+1)/p)/p, p]]; Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Feb 15 2019 *) PROG (PARI) a002068(n) = my(p=prime(n)); ((p-1)!+1)/p % p a197631(n) = my(p=prime(n), m=p-1); sum(k=1, m, k^m, -p-m!)/p^2 % p a(n) = a002068(n) + a197631(n) CROSSREFS Cf. A002068, A007540, A197631, A197632. Sequence in context: A068489 A088337 A195919 * A244846 A210415 A337275 Adjacent sequences: A275738 A275739 A275740 * A275742 A275743 A275744 KEYWORD nonn AUTHOR Felix Fröhlich, Aug 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 11:47 EDT 2024. Contains 372858 sequences. (Running on oeis4.)