login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of Wilson and Lerch remainders of n-th prime.
1

%I #41 Nov 08 2024 08:00:26

%S 1,3,10,6,6,17,15,11,25,38,9,37,47,39,86,58,107,50,101,36,98,45,123,

%T 92,170,57,80,72,158,194,194,67,78,133,120,302,144,158,128,97,91,303,

%U 76,191,139,178,302,117,242,179,335,390,362,197,290,314,327,227,429

%N Sum of Wilson and Lerch remainders of n-th prime.

%C a(n) = 0 if and only if prime(n) is in both A007540 and A197632, i.e., prime(n) is simultaneously a Wilson prime and a Lerch prime.

%C For n > 2, a(n) = 0 if and only if A027641(3*p-3) / A027642(3*p-3)-1 + 1/p == 0 (mod p^2), where p = prime(n) (cf. Dobson, 2016, theorem 2).

%C René Gy (see links) has shown that a number is simultaneously a Lerch prime and a Wilson prime if and only if it satisfies the congruence (p - 1)! + 1 == 0 (mod p^3). - _John Blythe Dobson_, Feb 23 2018

%H John Blythe Dobson, <a href="http://www.integers-ejcnt.org/q51/q51.Abstract.html">A Characterization of Wilson-Lerch Primes</a>, Integers, 16 (2016), A51.

%H René Gy, <a href="http://math.colgate.edu/~integers/s10/s10.mail.html">Generalized Lerch Primes</a>, Integers 18 (2018), A10.

%H Jonathan Sondow, <a href="http://arxiv.org/abs/1110.3113">Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771</a>, in Proceedings of CANT 2011, arXiv:1110.3113 [math.NT], 2011-2012.

%F a(n) = A002068(n) + A197631(n).

%t a[n_] := Module[{p = Prime[n]}, Mod[((p-1)!+1)/p, p] + Mod[(Sum[(k^(p-1)-1)/p, {k, 1, p-1}] - ((p-1)!+1)/p)/p, p]];

%t Table[a[n], {n, 2, 60}] (* _Jean-François Alcover_, Feb 15 2019 *)

%o (PARI) a002068(n) = my(p=prime(n)); ((p-1)!+1)/p % p

%o a197631(n) = my(p=prime(n), m=p-1); sum(k=1, m, k^m, -p-m!)/p^2 % p

%o a(n) = a002068(n) + a197631(n)

%Y Cf. A002068, A007540, A197631, A197632.

%K nonn

%O 2,2

%A _Felix Fröhlich_, Aug 07 2016