login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068486
Smallest prime equal to n^2 + m^2 with n >= m.
3
2, 5, 13, 17, 29, 37, 53, 73, 97, 101, 137, 193, 173, 197, 229, 257, 293, 349, 397, 401, 457, 509, 593, 577, 641, 677, 733, 809, 857, 1021, 977, 1033, 1093, 1181, 1229, 1297, 1373, 1453, 1621, 1601, 1697, 1789, 1913, 2017, 2029, 2141, 2213, 2473, 2417, 2549
OFFSET
1,1
COMMENTS
With i being the imaginary unit, the numbers m + ni and m - ni are Gaussian primes. - Alonso del Arte, Feb 07 2011
All terms after the first are congruent to 1 (mod 4). - Carmine Suriano, Mar 30 2011
Any value can occur at most once (a consequence of Alonso del Arte's comment plus unique factorization in the Gaussian integers). - Robert Israel, Aug 19 2014
Smallest prime of the form (x^2 + y^2)/2 such that |x| + |y| = 2n. Note: |x| = n - m and |y| = n + m. - Thomas Ordowski and Altug Alkan, Jan 13 2017
FORMULA
a(n) = n^2 + A069003(n)^2. - Thomas Ordowski, Aug 19 2014
MAPLE
for n from 1 to 100 do m := 1:while(not isprime(n^2+m^2)) do m := m+1; end do:a[n] := n^2+m^2:end do:q := seq(a[i], i=1..100);
MATHEMATICA
Table[k = 1; While[p = n^2 + k^2; Not[PrimeQ[p]], k++]; p, {n, 50}] (* Alonso del Arte, Feb 07 2011 *)
PROG
(PARI) a(n) = for (m=1, n, if (isprime(p=n^2+m^2), return (p))); \\ Michel Marcus, Jan 22 2017
CROSSREFS
Cf. A068487. The values of m are given by A069003.
Sequence in context: A291278 A177349 A160215 * A099332 A279687 A031439
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Mar 11 2002
EXTENSIONS
More terms from Sascha Kurz, Mar 17 2002
STATUS
approved