login
A068484
Numbers k that divide phi(k)^2 + sigma(k)^2.
1
1, 2, 10, 45, 65, 180, 212, 222, 369, 588, 810, 864, 1274, 1521, 1836, 2548, 2940, 3114, 3552, 4770, 5496, 5684, 6027, 6642, 8820, 9140, 10464, 10614, 13311, 14688, 15210, 20737, 21600, 22776, 26900, 27000, 27270, 28476, 28518, 42212, 42336
OFFSET
1,2
COMMENTS
a(275) > 7*10^7. - G. C. Greubel, Oct 15 2018
LINKS
MAPLE
with(numtheory): select(n->modp(phi(n)^2+sigma(n)^2, n)=0, [$1..42500]); # Muniru A Asiru, Oct 16 2018
MATHEMATICA
Select[Range[7000], IntegerQ[(EulerPhi[#]^2 + DivisorSigma[1, #]^2)/#] &] (* G. C. Greubel, Oct 15 2018 *)
PROG
(GAP) Filtered([1..42500], n->(Phi(n)^2+Sigma(n)^2) mod n=0); # Muniru A Asiru, Oct 16 2018
CROSSREFS
Cf. A072861 (sigma(n)^2), A127473 (phi(n)^2).
Sequence in context: A065805 A145239 A068561 * A192704 A005963 A140588
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 10 2002
STATUS
approved