login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068484
Numbers k that divide phi(k)^2 + sigma(k)^2.
1
1, 2, 10, 45, 65, 180, 212, 222, 369, 588, 810, 864, 1274, 1521, 1836, 2548, 2940, 3114, 3552, 4770, 5496, 5684, 6027, 6642, 8820, 9140, 10464, 10614, 13311, 14688, 15210, 20737, 21600, 22776, 26900, 27000, 27270, 28476, 28518, 42212, 42336
OFFSET
1,2
COMMENTS
a(275) > 7*10^7. - G. C. Greubel, Oct 15 2018
LINKS
MAPLE
with(numtheory): select(n->modp(phi(n)^2+sigma(n)^2, n)=0, [$1..42500]); # Muniru A Asiru, Oct 16 2018
MATHEMATICA
Select[Range[7000], IntegerQ[(EulerPhi[#]^2 + DivisorSigma[1, #]^2)/#] &] (* G. C. Greubel, Oct 15 2018 *)
PROG
(GAP) Filtered([1..42500], n->(Phi(n)^2+Sigma(n)^2) mod n=0); # Muniru A Asiru, Oct 16 2018
CROSSREFS
Cf. A072861 (sigma(n)^2), A127473 (phi(n)^2).
Sequence in context: A065805 A145239 A068561 * A192704 A005963 A140588
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 10 2002
STATUS
approved