|
|
A068482
|
|
Numbers n such that gcd(n!+1,2^n-1)>1.
|
|
4
|
|
|
2, 3, 4, 6, 10, 12, 16, 18, 22, 23, 28, 30, 36, 39, 40, 42, 46, 51, 52, 58, 60, 63, 66, 70, 72, 78, 82, 88, 95, 96, 99, 100, 102, 106, 108, 112, 126, 130, 131, 135, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 183, 190, 191, 192, 196, 198, 210, 215, 222, 226
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If n=p-1, p prime, then n is in the sequence.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..1000
|
|
MAPLE
|
select(n->gcd(factorial(n)+1, 2^n-1)>1, [$1..230]); # Muniru A Asiru, Oct 16 2018
|
|
MATHEMATICA
|
Select[Range[300], GCD[#!+1, 2^#-1]>1&] (* Harvey P. Dale, Jan 31 2015 *)
|
|
PROG
|
(PARI) isok(n) = gcd(n!+1, 2^n-1) > 1; \\ Michel Marcus, Oct 16 2018
(GAP) Filtered([1..230], n->Gcd(Factorial(n)+1, 2^n-1)>1); # Muniru A Asiru, Oct 16 2018
|
|
CROSSREFS
|
Cf. A000225 (2^n-1), A038507 (n!+1).
Cf. A068480, A068481, A068483.
Sequence in context: A177913 A098392 A076850 * A068499 A137172 A069744
Adjacent sequences: A068479 A068480 A068481 * A068483 A068484 A068485
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Benoit Cloitre, Mar 10 2002
|
|
STATUS
|
approved
|
|
|
|