OFFSET
1,2
COMMENTS
The terminology "non-overlapping" is used to distinguish from "continuous" which would be block 1: 2, 3, 5, 7; block 2: 3, 5, 7, 11 etc.
The number of negative values in this sequence appears to be consistently larger than the number of positive values. For n=10^x we have ratios:
n ratio pos/neg first difference of ratio:
10^2 0.66666666666...
10^3 0.61290322580... -0.053
10^4 0.76928520877... 0.156
10^5 0.83163601729... 0.062
10^6 0.85985612153... 0.028
This suggests the ratio is approaching a limit close to 0.87.
FORMULA
a(n) = prime(4n-3)*prime(4n) - prime(4n-2)*prime(4n-1).
EXAMPLE
The 4th block of 4-primes is 41,43,47,53. So the determinant is = 41*53 - 43*47 = 152 = a(4).
MAPLE
A117027 := proc(n) ithprime(4*n-3)*ithprime(4*n)-ithprime(4*n-2)*ithprime(4*n-1) ; end proc:
seq(A117027(n), n=1..30) ; # R. J. Mathar, Mar 27 2010
PROG
(PARI) det(n) = {local(m, p, x, D); m=0; p=0;
forstep(x=1, n, 4, D=prime(x)*prime(x+3)-prime(x+1)*prime(x+2); if(D<0, m++, p++); print1(D", ") );
print(); print("neg= "m); print("pos= "p); print("pos/neg = "p/m+.) }
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Cino Hilliard, Apr 24 2006
EXTENSIONS
Formula reformulated using standard nomenclature by R. J. Mathar, Mar 27 2010
STATUS
approved