login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371564
Number of binary strings of length n which have more 01 than 00 substrings.
4
0, 0, 1, 3, 6, 13, 28, 56, 113, 231, 464, 930, 1875, 3766, 7547, 15151, 30398, 60917, 122116, 244786, 490435, 982544, 1968413, 3942649, 7896116, 15813268, 31665423, 63403245, 126945244, 254152625, 508798604, 1018538560, 2038870881, 4081149015, 8168806568
OFFSET
0,4
FORMULA
a(n) = 2^n - A163493(n) - A371358(n).
a(n) = (1 - 8*(n-4)*a(n-5) + 4*(3*n-10)*a(n-4) + 2*(8-3*n)*a(n-3) + (5*n-12)*a(n-2) + (7-4*n)*a(n-1))/(1-n) for n>=5.
For n >= 2, a(n) = 2*a(n-1) - A163493(n) + A163493(n-1) + A163493(n-2) + A370048(n-2). - Max Alekseyev, May 01 2024
G.f.: ((1-3*x+2*x^2)^(-1) - (1-2*x+x^2-4*x^3+4*x^4)^(-1/2)) * x / 2. - Max Alekseyev, Apr 30 2024
EXAMPLE
a(4) = 6: 0101, 0110, 0111, 1010, 1011, 1101.
a(5) = 13: 0010, 0100, 0101, 0101, 0110, 0111, 0111, 1010, 1011, 1011, 1101, 1101, 1110.
MAPLE
b:= proc(n, l, t) option remember; `if`(n+t<1, 0, `if`(n=0, 1,
add(b(n-1, i, t-`if`(l=0, (-1)^i, 0)), i=0..1)))
end:
a:= n-> b(n, 2, 0):
seq(a(n), n=0..34); # Alois P. Heinz, Mar 27 2024
MATHEMATICA
tup[n_] := Tuples[{0, 1}, n];
cou[lst_List] := Count[lst, {0, 1}] > Count[lst, {0, 0}];
par[lst_List] := Partition[lst, 2, 1];
a[n_] := Map[cou, Map[par, tup[n]]] // Boole // Total;
Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}]
CROSSREFS
Cf. A163493 (equal 00 and 01), A371358 (more 00 than 01), A090129 (equal 01 and 10), A182027 (equal 00 and 11), A370048 (one more 00 than 01).
Cf. A000079(n-2) (more 01 than 10, for n>=2).
Sequence in context: A032253 A125777 A103788 * A182137 A106461 A348124
KEYWORD
nonn
AUTHOR
Robert P. P. McKone, Mar 27 2024
STATUS
approved